Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ...Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.展开更多
In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Sta...In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.展开更多
Acoustic radiation and the dynamic field induced by a cylindrical source of infinite extent, undergoing angularly periodic and axially-dependent harmonic surface vibrations, while eccentrically suspended in a fluid-fi...Acoustic radiation and the dynamic field induced by a cylindrical source of infinite extent, undergoing angularly periodic and axially-dependent harmonic surface vibrations, while eccentrically suspended in a fluid-filled cylindrical cavity embedded within a fluid-saturated porous elastic formation, are analyzed in an exact manner. This configuration, which is a realistic idealization of an acoustic logging tool suspended in a fluid-filled borehole within a permeable surrounding formation, is of practical importance with a multitude of possible applications in seismo-acoustics. The formulation utilizes the novel features of Biot dynamic theory of poroelasticity along with the translational addition theorem for cylindrical wave functions to obtain a closedform series solution. The basic dynamic field quantities such as the resistive and the reactive components of the modal acoustic radiation impedance load on the source in addition to the radial and transverse stresses induced in the surrounding formation by an eccentric pulsating/oscillating cylinder in a water-filled borehole within a water-saturated Ridgefield sandstone medium are evaluated and discussed. Special attention is paid to the effects of source eccentricity, excitation frequency, and mode of surface oscillations on the modal impedance values and the dynamic stresses. Limiting cases are considered and good agreements with available solutions are obtained.展开更多
基金the National Natural Science Foundation of China(No.50574061)
文摘Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.
基金the Research Partnership to Secure Energy for America (RPSEA) for its financial support for this work
文摘In mature reservoirs,the success of preformed particle gel(PPG) treatment rests primarily on the ability of the PPG to reduce and/or plug the high permeable formations,but not damage the low permeable formations.Static test models(filtration test model and pressure test model)were used to determine the effect of PPG on low permeable formations.This work used a strong preformed particle gel,Daqing(DQ) gel made by a Chinese company.The particle gel sizes were ranged from 30 to 120 mesh for this work.PPGs are sized in a millimeter or micrometer,which can absorb over a hundred times their weight in liquids.The gel strength was approximately 6500 Pa for a completely swollen PPG with 1 %(weight percentage) NaCl solution(brine).0.05 %,1 %,and 10 % NaCl solutions were used in experiments.Sandstone core permeability was measured before and after PPG treatments.The relationship between cumulative filtration volumes versus filtration times was determined.The results indicate that DQ gels of a particle size of 30–80 mesh did not damage the cores of a low permeability of 3–25 m D.The DQ gels of a smaller particle size ranging from 100 to 120 mesh damaged the core and a cake was formed on the core surface.The results also indicate that more damage occurred when a high load pressure(400 psi) was applied on the high permeability cores(290–310 m D).The penetration of the particle gelsinto the low permeable formations can be decreased by the best selection of gel types,particle sizes,and brine concentrations.
文摘Acoustic radiation and the dynamic field induced by a cylindrical source of infinite extent, undergoing angularly periodic and axially-dependent harmonic surface vibrations, while eccentrically suspended in a fluid-filled cylindrical cavity embedded within a fluid-saturated porous elastic formation, are analyzed in an exact manner. This configuration, which is a realistic idealization of an acoustic logging tool suspended in a fluid-filled borehole within a permeable surrounding formation, is of practical importance with a multitude of possible applications in seismo-acoustics. The formulation utilizes the novel features of Biot dynamic theory of poroelasticity along with the translational addition theorem for cylindrical wave functions to obtain a closedform series solution. The basic dynamic field quantities such as the resistive and the reactive components of the modal acoustic radiation impedance load on the source in addition to the radial and transverse stresses induced in the surrounding formation by an eccentric pulsating/oscillating cylinder in a water-filled borehole within a water-saturated Ridgefield sandstone medium are evaluated and discussed. Special attention is paid to the effects of source eccentricity, excitation frequency, and mode of surface oscillations on the modal impedance values and the dynamic stresses. Limiting cases are considered and good agreements with available solutions are obtained.