The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural...The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.展开更多
Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, log...Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, logging response and lithofacies identification. Six lithofacies are developed in the Fengcheng Formation. The Feng 2 Member(P1 f2) is dominated by lithofacies with alkaline minerals, while the upper part of the Feng 1 Member(P1 f1) and the lower part of the Feng 3 Member(P1 f3) are primarily organic-rich mudstones that are interbedded with dolomite and dolomitic rock. Paleoenvironment evolution of Fengcheng Formation can be divided into 5 stages, which was controlled by volcanic activity and paleoclimate. The first stage(the early phase of P1 f1) was characterized by intensive volcanic activity and arid climate, developing pyroclastics and sedimentary volcaniclastic rocks. The secondary stage(the later phase of P1 f1) had weak volcanic activity and humid climate that contributed to the development of organic-rich mudstone, forming primary source rock in the Fengcheng Formation. The increasing arid climate at the third stage(the early phase of P1 f2) resulted in shrinking of lake basin and increasing of salinity, giving rise to dolomite and dolomitic rocks. The continuous aird climate, low lake level and high salinity at the fourth stage(the later phase of P1 f2) generated special alkaline minerals, e.g., trona, indicating the formation of alkaline-lacustrine. The humid climate made lake level rise and desalted lake water, therefore, the fifth stage(P1 f3) dominated by the deposition of terrigenous clastic rocks and dolomitic rocks.展开更多
The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± ...The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.展开更多
Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks ...Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.展开更多
Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the se...Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the section beneath the bottom of the perennial salt lake,including the timing,展开更多
The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in v...The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in volcanic rock and vein-hosted Pb-Zn ore bodies controlled by fractures. The vein Pb-Zn ore bodies are strictly controlled by tectonic fracture zones trending in S-N direction,which comprise sulfide veins or sulfidebearing quartz veins distributed along faults or structural fissures. The ores mainly appear mesh-vein and vein structures,and also show solid-solution separation and metasomatic textures. The metal minerals are mainly sphalerite,galena,and pyrite,etc. Wall-rock alteration includes mainly sericitization,chloritization,silicification and carbonatization,etc. Microscope observations and Raman spectroscopy analyses indicate that the oreforming fluid of the vein Pb-Zn ore bodies was mainly magmatic water with low temperature,low salinity,and a shallow depth of metallogenesis( ~ 1.5 km). Sulfur and lead isotope analyses indicate that the sulfide source is mainly formation sulfur or biogenic sulfur,which is similar to the sulfur source of hydrothermal deposit( negative( δ^(34) S values),while the main Pb source was the upper crust with some mantle input. This article argues that the vein Pb-Zn ore body of the Xiaohongshilazi deposit is a low-to medium-temperature hydrothermal vein type related to the formation of a shallow magma chamber.展开更多
Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate m...Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks.展开更多
The gold-silver complex ore field of Qingchengzi is located in Liaohe group of Liaodong rift. The gold-silver ore bodies mainly lie in Dashiqiao group and Gaixian group. which provides ore-forming materials for the mi...The gold-silver complex ore field of Qingchengzi is located in Liaohe group of Liaodong rift. The gold-silver ore bodies mainly lie in Dashiqiao group and Gaixian group. which provides ore-forming materials for the mineralization. For taking place multi-period and multi-stage magmatic activities, the ore-forming materials in the formation had had dyna- mothermal metamorphism for a long time and enriched and formed ore bodies after magmatism in Indo-Chinese and Yan- shan epoch. The ore bodies are controlled by stratigraphic formation and stored in the interformational faults and schistosity belts. Silicalite is the most important indicator for searching them. Although the Pb-Zn and the gold-silver deposits are the same series of mineralized products, their positions are different, resulting from the differences of elements nature and mineralized conditions. The gold silver deposits belong to strata-bound and hysterogeneticmesothermal-epithermal de- posit.展开更多
文摘The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.
基金Supported by the China National Science and Technology Major Project(2017ZX05001)the PetroChina Science and Technology Major Project(2016B-0302)
文摘Alkaline-lacustrine deposition and its evolution model in Permian Fengcheng Formation at the Mahu sag, Junggar Basin were investigated through core and thin-section observation, geochemical and elemental analysis, logging response and lithofacies identification. Six lithofacies are developed in the Fengcheng Formation. The Feng 2 Member(P1 f2) is dominated by lithofacies with alkaline minerals, while the upper part of the Feng 1 Member(P1 f1) and the lower part of the Feng 3 Member(P1 f3) are primarily organic-rich mudstones that are interbedded with dolomite and dolomitic rock. Paleoenvironment evolution of Fengcheng Formation can be divided into 5 stages, which was controlled by volcanic activity and paleoclimate. The first stage(the early phase of P1 f1) was characterized by intensive volcanic activity and arid climate, developing pyroclastics and sedimentary volcaniclastic rocks. The secondary stage(the later phase of P1 f1) had weak volcanic activity and humid climate that contributed to the development of organic-rich mudstone, forming primary source rock in the Fengcheng Formation. The increasing arid climate at the third stage(the early phase of P1 f2) resulted in shrinking of lake basin and increasing of salinity, giving rise to dolomite and dolomitic rocks. The continuous aird climate, low lake level and high salinity at the fourth stage(the later phase of P1 f2) generated special alkaline minerals, e.g., trona, indicating the formation of alkaline-lacustrine. The humid climate made lake level rise and desalted lake water, therefore, the fifth stage(P1 f3) dominated by the deposition of terrigenous clastic rocks and dolomitic rocks.
文摘The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.
基金supported by the National Natural Science Foundation,40073013
文摘Geochemical characteristics of the Chagande'ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande'ersi molybdenum deposit consist mainly of medium- to fine-grained monzogranite, medium-to fine-grained rich-K granite, with minor fine-grained K- feldspar granite veins and quartz veins. The rocks are characterized by high silica, rich alkali, high potassium, which are favorable factors for molybdenum mineralization. The rocks have the Rittmann index ranging from 1.329 to 1.961, an average Na20+K20 value of 7.41, and AI2Oa/(CaO+Na20+K^O) 〉1, suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite. The typical rock samples are enriched in Rb, Th, K and light rare earth elements, depleted in Sr, Ba, Nb, P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins. The JEu of the rocks falls the zone between the crust granite and crust-mantle granite, and are close to that of the crust granite; (La/LU)N indicates the formation environment of granite is a continental margin setting. The Nb/Ta ratios are close to that of the average crust (10); the Zr/Hf ratios of monzogranite are partly below the mean mantle (34-60), while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust. Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision. During the plate collision and orogeny, the crust and mantle material were mixed physically, remelting into lava and then crystal fractionation, finally gave rise to the formation of the rock body in this area. This has close spatial and temporal relation with the molybdenum mineralization.
文摘Da Qaidam salt lake is known for its both liquid and solid boron resource.Data from previous investigation of the Da Qaidam salt lake provided a comparable framework for this study that focused on investigating the section beneath the bottom of the perennial salt lake,including the timing,
基金Supported by Project of Natural Science Foundation of Jilin Province(No.20170101084JC)
文摘The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in volcanic rock and vein-hosted Pb-Zn ore bodies controlled by fractures. The vein Pb-Zn ore bodies are strictly controlled by tectonic fracture zones trending in S-N direction,which comprise sulfide veins or sulfidebearing quartz veins distributed along faults or structural fissures. The ores mainly appear mesh-vein and vein structures,and also show solid-solution separation and metasomatic textures. The metal minerals are mainly sphalerite,galena,and pyrite,etc. Wall-rock alteration includes mainly sericitization,chloritization,silicification and carbonatization,etc. Microscope observations and Raman spectroscopy analyses indicate that the oreforming fluid of the vein Pb-Zn ore bodies was mainly magmatic water with low temperature,low salinity,and a shallow depth of metallogenesis( ~ 1.5 km). Sulfur and lead isotope analyses indicate that the sulfide source is mainly formation sulfur or biogenic sulfur,which is similar to the sulfur source of hydrothermal deposit( negative( δ^(34) S values),while the main Pb source was the upper crust with some mantle input. This article argues that the vein Pb-Zn ore body of the Xiaohongshilazi deposit is a low-to medium-temperature hydrothermal vein type related to the formation of a shallow magma chamber.
文摘Through the study of the oxidized zone of the Debao skarn-type Cu-Sn deposit in Guangxi, the authorshave found 14 arsenate minerals, most of which are for the first time reported in China. They are mainly Cuarsenate minerals with subordinate Cu-Pb arsenate minerals and minor Fe-Pb-Ba varieties. Based on their paragenesis these minerals may be divided into the following series: (1) the clinoclasite-olivenite-cornwallite- cornubite- debaoite- copper silicarsenate association, (2) the scorodite- carminite- beudan-tite-bayldonite- duftite association, and (3) the scorodite-Ba-bearing pharmacosiderite- dussertite association. Arsenate minerals are formed generally in the oxidized zone of the sulfide-type deposits which lie in thewarm, humid and rainy torrid-subtropical zone with pH=6-8 and contain large amounts of arsenopyrite andcarbonate rocks.
文摘The gold-silver complex ore field of Qingchengzi is located in Liaohe group of Liaodong rift. The gold-silver ore bodies mainly lie in Dashiqiao group and Gaixian group. which provides ore-forming materials for the mineralization. For taking place multi-period and multi-stage magmatic activities, the ore-forming materials in the formation had had dyna- mothermal metamorphism for a long time and enriched and formed ore bodies after magmatism in Indo-Chinese and Yan- shan epoch. The ore bodies are controlled by stratigraphic formation and stored in the interformational faults and schistosity belts. Silicalite is the most important indicator for searching them. Although the Pb-Zn and the gold-silver deposits are the same series of mineralized products, their positions are different, resulting from the differences of elements nature and mineralized conditions. The gold silver deposits belong to strata-bound and hysterogeneticmesothermal-epithermal de- posit.