期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
The origin of high eccentricity planets:The dispersed planet formation regime for weakly magnetized disks 被引量:1
1
作者 Yusuke Imaeda Toshikazu Ebisuzaki 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期233-245,共13页
In the tandem planet formation regime,planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability(MRI).We found that tandem planet fo... In the tandem planet formation regime,planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability(MRI).We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites.In the present paper,we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk.We calculated two cases of BZ 3.4 × 10^-3 G and BZ = 3.4 × 10^-5 G at 100 AU as well as the canonical case of BZ = 3.4 × 10^-4 G.We found that tandem planet formation holds up well in the case of the strong magnetic field(BZ 3.4 × 10^-3 G).On the other hand,in the case of a weak magnetic field(BZ= 3.4 × 10^-5 G) at 100 AU,a new regime of planetary growth is realized:the planets grow independently at different places in the dispersed area of the MRl-suppressed region of r-8-30 AU at a lower accretion rate of M 〈 10^-7.4M⊙yr^-1.We call this the "dispersed planet formation" regime.This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions. 展开更多
关键词 Accretion disk Planet formation Magnetorotational instability
下载PDF
The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history? 被引量:2
2
作者 Mao-Sheng Xiang Xiao-Wei Liu +8 位作者 Hai-Bo Yuan Yang Huang Chun Wang Juan-Juan Ren Bing-Qiu Chen Ning-Chen Sun Hua-Wei Zhang Zhi-Ying Huo Alberto Rebassa-Mansergas 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第8期1209-1239,共31页
Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk... Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anticenter(LSS-GAC) to determine the radial and vertical gradients of stellar metallicity,△[Fe/H]/△R and △[Fe/H]/△|Z | of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages( 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages( 11 Gyr)are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R.After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum(steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7–8 Gyr.The transition between the two phases occurs around a lookback time between 8 and11 Gyr. The two phases may be responsible for the formation of the Milky Way's thick and thin disks, respectively. Also, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish stars from the thin and thick disks. From an epoch earlier than 11 Gyr to one between 8 and 11 Gyr, there is an abrupt, significant change in magnitude of both the radial and vertical metallicity gradients, suggesting that stellar radial migration is unlikely to play an important role in the formation of the thick disk. 展开更多
关键词 Galaxy: abundances—Galaxy: disk—Galaxy: evolution Galaxy: formation—techniques: spectroscopic
下载PDF
Dust growth in protoplanetary disks-a comprehensive experimental / theoretical approach 被引量:1
3
作者 Jürgen Blum 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2010年第12期1199-1214,共16页
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and ... More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals. 展开更多
关键词 planetary systems: protoplanetary disks -- planetary systems: formation-- methods: laboratory -- methods: numerical
下载PDF
An SPH simulation for cooling and self-gravitating protoplanetary disks
4
作者 Kazem Faghei 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第2期170-178,共9页
We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling ra... We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling rate of the flow, du/dt = -u/τcool, where u and %ool are the internal energy and cooling timeseale, respectively. We assume the ratio of local'cooling to dynamical timescale, Ωτcool =β, to be a constant and also a function of the local temperature. We found that for the constantβ and γ = 5/3, fragmentation occurs only forβ ≤ 7. However, in the case ofβ having temperature dependence and γ = 5/3, fragmentation can also occur for larger values ofβ. By increasing the temperature dependence of the cooling timescale, the mass accretion rate decreases, the population of clumps/fragments increases, and the clumps/fragments can also form in the smaller radii. Moreover, we found that the clumps can form even in a low mass accretion rate, ≤10-7M⊙yr-1, in the case of temperature-dependentβ. However, clumps form with a larger mass accretion rate, 〉 10-7M⊙ yr-1, in the case of constantβ. 展开更多
关键词 accretion accretion disks -- planetary systems protoplanetary disks -- planetary systems formation
下载PDF
On the possibility of disk-fed formation in supergiant high-mass X-ray binaries
5
作者 Ali Taani Shigeyuki Karino +3 位作者 Liming Song Mashhoor Al-Wardat Awni Khasawneh Mohammad K.Mardini 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第1期123-130,共8页
We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to dem... We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to demonstrate their distribution and evolution. The wind velocity, spin period and magnetic field strength are studied under different mass loss rates. In our model, correlations between mass-loss rate and wind velocity are found and can be tested in further observations. We examine the parameter space where wind accretion is allowed, avoiding the barrier of rotating magnetic fields, with robust data on the magnetic field of neutron stars. Our model shows that most sources(six of nine systems) can be fed by the wind with relatively slow velocity, and this result is consistent with previous predictions. In a few sources,our model cannot fit the standard wind accretion scenario. In these peculiar cases, other scenarios(disk formation, partial Roche lobe overflow) should be considered. This would provide information about the evolutionary tracks of various types of binaries, and thus exhibit a clear dichotomy behavior in wind-fed X-ray binary systems. 展开更多
关键词 binaries:X-rays stars:neutron stars:fundamental parameters ACCRETION disks formation magnetic fields
下载PDF
Ice lines as the origin for the gap/ring structure in protoplanetary disks: the issue of the assumed temperature profile
6
作者 Yao Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第7期91-98,共8页
Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine... Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine the ice line hypothesis, literature studies usually parameterize the midplane temperature with the analytic formula of a passively heated, flared disk. The temperature in this simplified expression is basically dependent on the stellar luminosity. I have built a grid of self-consistent radiative transfer models that feature the same stellar properties, but different disk parameters. The midplane temperature of these models shows a large dispersion over a wide range of radii, indicating that besides the stellar luminosity, the disk parameters also play an important role in determining the thermal structure.Comparing the mid-plane temperature from radiative transfer simulation with the analytic solution shows a large difference between both approaches. This result suggests that special care on the assumed temperature profile has to be taken in the analysis of gap/ring origins, and conclusions drawn in previous works on the basis of the analytic temperature should be revisited. I further took the AS 209 disk as an example, and conducted a detailed radiative transfer modeling of the spectral energy distribution and the ALMA Band 6 image. The D137, D24 and D9 gaps are associated with the ice lines of major volatiles in the disk according to such a thorough analysis. However, if the temperature profile simply follows the analytic formula, none of these gaps matches the ice lines of the species considered here. 展开更多
关键词 protoplanetary disks radiative transfer stars:formation
下载PDF
A numerical study of self-gravitating protoplanetary disks
7
作者 Kazem Faghei 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2012年第3期331-344,共14页
The effect of self-gravity on protoplanetary disks is investigated.The mechanisms of angular momentum transport and energy dissipation are assumed to be the viscosity due to turbulence in the accretion disk.The energy... The effect of self-gravity on protoplanetary disks is investigated.The mechanisms of angular momentum transport and energy dissipation are assumed to be the viscosity due to turbulence in the accretion disk.The energy equation is considered in a situation where the released energy by viscosity dissipation is balanced with cooling processes.The viscosity is obtained by equality of dissipation and cooling functions,and is used to derive the angular momentum equation.The cooling rate of the flow is calculated by a prescription,du/dt = u/τ cool,where u and τ cool are the internal energy and cooling timescale,respectively.The ratio of local cooling to dynamical timescales Ωτ cool is assumed to be a constant and also a function of the local temperature.The solutions for protoplanetary disks show that in the case of Ωτ cool = constant,the disk does not exhibit any gravitational instability over small radii for a typical mass accretion rate,˙ M = 10 6 M yr 1,but when choosing Ωτ cool to be a function of temperature,gravitational instability can occur for this value of mass accretion rate or even less in small radii.Also,by studying the viscosity parameter α,we find that the strength of turbulence in the inner part of self-gravitating protoplanetary disks is very low.These results are qualitatively consistent with direct numerical simulations of protoplanetary disks.Also,in the case of cooling with temperature dependence,the effect of physical parameters on the structure of the disk is investigated.These solutions demonstrate that disk thickness and the Toomre parameter decrease by adding the ratio of disk mass to central object mass.However,the disk thickness and the Toomre parameter increase by adding mass accretion rate.Furthermore,for typical input parameters such as mass accretion rate 10 6 M yr 1,the ratio of the specific heat γ = 5/3 and the ratio of disk mass to central object mass q = 0.1,gravitational instability can occur over the whole radius of the disk excluding the region very near the central object. 展开更多
关键词 ACCRETION accretion disks—planetary systems:protoplanetary disks—planetary systems:formation
下载PDF
Gap formation in a self-gravitating disk and the associated migration of the embedded giant planet
8
作者 Hui Zhang Hui-Gen Liu +1 位作者 Ji-Lin Zhou Robert A.Wittenmyer 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第4期433-455,共23页
We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disk's self-gravity affects the gap formation process and the migration of... We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disk's self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1-D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of the disk's gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disk's self- gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, ∑I and ∑n. When the surface density of the disk is lower than the first one,∑0 〈 ∑I, the effect of self-gravity suppresses the formation of a gap. When ∑0 〉 ∑I, the self-gravity of the gas tends to benefit the gap formation process and enlarges the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density to be ∑I ≈ 0.8 MMSN. This effect increases until the surface density reaches the second critical value ∑n- When ∑0 〉 ∑n, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5 MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disk's self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale correlates with the effective viscosity and can be up to 104 yr. 展开更多
关键词 planets and satellites: formation -- planetary systems: formation --planetary systems: protoplanetary disks
下载PDF
Ionization of protoplanetary disks by galactic cosmic rays,solar protons,and supernova remnants
9
作者 Ryuho Kataoka Tatsuhiko Sato 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期247-252,共6页
Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evalua... Galactic cosmic rays and solar protons ionize the present terrestrial atmosphere,and the air showers are simulated by well-tested Monte-Carlo simulations,such as PHITS code.We use the latest version of PHITS to evaluate the possible ionization of protoplanetary disks by galactic cosmic rays(GCRs),solar protons,and by supernova remnants.The attenuation length of GCR ionization is updated as 118 g cm^-2,which is approximately 20% larger than the popular value.Hard and soft possible spectra of solar protons give comparable and 20% smaller attenuation lengths compared with those from standard GCR spectra,respectively,while the attenuation length is approximately 10% larger for supernova remnants.Further,all of the attenuation lengths become 10% larger in the compound gas of cosmic abundance,e.g.128 g cm^-2 for GCRs,which can affect the minimum estimate of the size of dead zones in protoplanetary disks when the incident flux is unusually high. 展开更多
关键词 Galactic cosmic rays Solar protons Supernova remnants Young Sun protoplanetary disk T Tauri stars
下载PDF
The snowline in the protoplanetary disk and extrasolar planets 被引量:1
10
作者 Chun-Jian Liu Zhen Yao Wen-Bo Ding 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第8期13-22,共10页
We investigate the behavior of the snowline in a protoplanetary disk and the relationship between the radius of the snowline and properties of molecular cloud cores.In our disk model,we consider mass influx from the g... We investigate the behavior of the snowline in a protoplanetary disk and the relationship between the radius of the snowline and properties of molecular cloud cores.In our disk model,we consider mass influx from the gravitational collapse of a molecular cloud core,irradiation from the central star,and thermal radiation from the ambient molecular cloud gas.As the protoplanetary disk evolves,the radius of the snowline increases first to a maximum value Rmax,and then decreases in the late stage of evolution of the protoplanetary disk.The value of Rmaxis dependent on the properties of molecular cloud cores(mass M;,angular velocity ω and temperature T;).Many previous works found that solid material tends to accumulate at the location of the snowline,which suggests that the snowline is the preferred location for giant planet formation.With these conclusions,we compare the values of R;with semimajor axes of giant planets in extrasolar systems,and find that Rmaxmay provide an upper limit for the locations of the formation of giant planets which are formed by the core accretion model. 展开更多
关键词 snowline—planets and satellites formation—protoplanetary disks
下载PDF
A tale of planet formation: from dust to planets 被引量:2
11
作者 Beibei Liu Jianghui Ji 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第10期249-286,共38页
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade.Benefitting from that,our global understanding of the planet formation processes has been substantiall... The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade.Benefitting from that,our global understanding of the planet formation processes has been substantially improved.In this review,we first summarize the cutting-edge states of the exoplanet and disk observations.We further present a comprehensive panoptic view of modern core accretion planet formation scenarios,including dust growth and radial drift,planetesimal formation by the streaming instability,core growth by planetesimal accretion and pebble accretion.We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations.Finally,we point out the critical questions and future directions of planet formation studies. 展开更多
关键词 planets and satellites:general planets and satellites:formation planets and satellites:dynamical evolution and stability protoplanetary disks
下载PDF
Single planet formation regime in the high-ionization environment:Possible origin of hot Jupiters and super-Earths 被引量:1
12
作者 Yusuke Imaeda Toshikazu Ebisuzaki 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1023-1031,共9页
We studied the particle growth in a protoplanetary disk in a high-ionization environment and found that icy planet formation is inactive for a disk with an ionization rate 100 times higher than that of the present Sol... We studied the particle growth in a protoplanetary disk in a high-ionization environment and found that icy planet formation is inactive for a disk with an ionization rate 100 times higher than that of the present Solar System. In particular, in the case of M 〈 10^(-7.4)M_☉yr^(-1), only rocky planet formation occurs. In such a case, all the solid materials in the disk drift inward, eventually reach the inner MRI front,and accumulate there. They form a dense, thin sub-disk of solid particles, which undergoes gravitational instability to form rocky planetesimals. The planetesimals rapidly grow into a planet through pebble accretion. Consequently, rocky planets tend to be much larger than planets formed through other regimes(tandem planet formation regime and dispersed planet formation regime), in which icy planet formation actively takes place. These rocky planets may evolve into hot Jupiters if they grow fast enough to the critical core mass of the runaway gas accretion before the dispersal of the disk gas, or they may evolve into super-Earths if the gas dispersed sufficiently early. 展开更多
关键词 Accretion disk Planet formation Magneto-rotational instability Galactic cosmic rays Hot Jupiter Super-Earth
下载PDF
Tandem planet formation for solar system-like planetary systems 被引量:1
13
作者 Yusuke Imaeda Toshikazu Ebisuzaki 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期223-231,共9页
We present a new united theory of planet formation,which includes magneto-rotational instability(MRl) and porous aggregation of solid particles in a consistent way.We show that the "tandem planet formation" regime... We present a new united theory of planet formation,which includes magneto-rotational instability(MRl) and porous aggregation of solid particles in a consistent way.We show that the "tandem planet formation" regime is likely to result in solar system-like planetary systems.In the tandem planet formation regime,planetesimals form at two distinct sites:the outer and inner edges of the MRl suppressed region.The former is likely to be the source of the outer gas giants,and the latter is the source for the inner volatile-free rocky planets.Our study spans disks with a various range of accretion rates,and we find that tandem planet formation can occur for M = 10^7.3- 10^-6.9Myr^-1.The rocky planets form between 0.4-2 AU,while the icy planets form between 6-30 All;no planets form in 2-6 AU region for any accretion rate.This is consistent with the gap in the solid component distribution in the solar system,which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2-6 AU.The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet.Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions.Reactions between reductive minerals,such as schreibersite(Fe-jP),and water are essential to supply energy and nutrients for primitive life on Earth. 展开更多
关键词 Accretion disk Planet formation Magneto-rotational instability Origin of life
下载PDF
The density and temperature dependence of the cooling timescale for fragmentation of self-gravitating disks
14
作者 Kazem Faghei 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第6期648-666,共19页
The purpose of this paper is to explore the influences of cooling timescale on fragmentation of self-gravitating protoplanetary disks. We assume the cooling timescale, expressed in terms of the dynamical timescale Ω ... The purpose of this paper is to explore the influences of cooling timescale on fragmentation of self-gravitating protoplanetary disks. We assume the cooling timescale, expressed in terms of the dynamical timescale Ω tcool, has a power-law dependence on temperature and density, Ω toool ∝∑-aT-b, where a and b are con- stants. We use this cooling timescale in a simple prescription for the cooling rate, du/dt = -u/tcoll, where u is the internal energy. We perform our simulations using the smoothed particle hydrodynamics method. The simulations demonstrate that the disk is very sensitive to the cooling timescale, which depends on density and tem- perature. Under such a cooling timescale, the disk becomes gravitationally unstable and clumps form in the disk. This property even occurs for cooling timescales which are much longer than the critical cooling timescale, Ω toool≥ 7. We show that by adding the dependence of a cooling timescale on temperature and density, the number of clumps increases and the clumps can also form at smaller radii. The simulations im- ply that the sensitivity of a cooling timescale to density is more than to temperature, because even for a small dependence of the cooling timescale on density, clumps can still form in the disk. However, when the cooling timescale has a large dependence on temperature, clumps form in the disk. We also consider the effects of artificial viscos- ity parameters on fragmentation conditions. This consideration is performed in two cases, where Ω tcool is a constant and Ω tcool is a function of density and temperature. The simulations consider both cases, and results show the artificial viscosity param- eters have rather similar effects. For example, using too small of values for linear and quadratic terms in artificial viscosity can suppress the gravitational instability and consequently the efficiency of the clump formation process decreases. This property is consistent with recent simulations of self-gravitating disks. We perform simulations with and without the Balsara form of artificial viscosity. We find that in the cooling and self-gravitating disks without the Balsara switch, the clumps can form more easily than those with the Balsara switch. Moreover, in both cases where the Balsara switch is present or absent, the simulations show that the cooling timescale strongly depends on density and temperature. 展开更多
关键词 ACCRETION accretion disks -- planetary systems: protoplanetary disks --planetary systems: formation
下载PDF
The effects of viscosity on circumplanetary disks
15
作者 De-Fu Bu Hsien Shang Feng Yuan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第1期71-86,共16页
The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model. We find that viscosity ... The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model. We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp ~ 33 Me, where Me is the Earth's mass. However, effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp 〉 33 Me. We find that when Mp ~ 33 Me, viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas, which weakens the torques exerted on the protoplanet. Thus, viscosity can slow the migration speed of a protoplanet. After including viscosity, the size of the circumplanetary disk can be decreased by a factor of 〉~ 20%. Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk. The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp ~ 33 Me. Effects of viscosity on the formation of planets and satellites are briefly discussed. 展开更多
关键词 ACCRETION accretion disks -- hydrodynamics -- planets and satellites:formation -- solar system: formation
下载PDF
A WISE view of IRAS debris disks: revising the dust properties
16
作者 Qiong Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第3期86-96,共11页
Debris disks around stars are considered as components of planetary systems.Constraining the dust properties of these disks can give crucial information to formation and evolution of planetary systems.As an all-sky su... Debris disks around stars are considered as components of planetary systems.Constraining the dust properties of these disks can give crucial information to formation and evolution of planetary systems.As an all-sky survey,InfRared Astronomical Satellite(IRAS)gave great contribution to the debris disk searching which discovered the first debris disk host star(Vega).The IRAS-detected debris disk sample published by Rhee(Rhee et al.2007)contains 146 stars with detailed information of dust properties.While the dust properties of 45 of them still cannot be determined due to the limitations with the IRAS database(have IRAS detection at 60μm only).Therefore,using more sensitivity data of Wide-.field Infrared Survey Explorer(WISE),we can better characterize the sample stars:for the stars with IRAS detection at 60μm only,we refit the excessive flux densities and obtain the dust temperatures and fractional luminosities;while for the remaining stars with multi-bands IRAS detections,the dust properties are revised which show that the dust temperatures were overestimated in the high temperature band before.Moreover,we identify 17 stars with excesses at the WISE 22μm which have smaller distribution of distance from Earth and higher fractional luminosities than the other stars without mid-infrared excess emission.Among them,15 stars can be found in previous works. 展开更多
关键词 (stars:)circumstellar matter protoplanetary disks infrared:stars
下载PDF
Stability and Vorticity Production in Stratified Astrophysical Disks
17
作者 E. S. Uchava A. G. Tevzadze G. D. Chagelishvili 《Journal of Modern Physics》 2013年第5期18-22,共5页
We study local linear non-axisymmetric perturbations in fully stratified 3D astrophysical disks. Radial stratification is set to be described by power law, while vertical stratification is set to be exponential. We an... We study local linear non-axisymmetric perturbations in fully stratified 3D astrophysical disks. Radial stratification is set to be described by power law, while vertical stratification is set to be exponential. We analyze the linear perturbations in local shearing sheet frame and derive WKB dispersion equation. We show that stratification laws of the disk matter define not only the thermal stability of the disk, but also the efficiency of the potential vorticity production by rotationg convective turbulence in astrophysical disks. Taken developed convective turbulence we assume nonlinear tendencies set by linear spectrum and show that vortices are unlikely to be generated in rigid rotation flows. In contrast, differential rotation yields much higher vortex production rate that depends on the disk thickness, distance from the central object and the spectral characteristics of the developed thermal turbulence. It seems that measurements of the temperature and density distribution in accretion disks may indicate the efficiency of the turbulence development and largely define the luminosity characteristic of accreting flows. 展开更多
关键词 ACCRETION disks protoplanetary disks TURBULENCE
下载PDF
Delay of planet formation at large radius and the outward decrease in mass and gas content of Jovian planets
18
作者 Li-Ping Jin Chun-Jian Liu Yu Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第9期1597-1603,共7页
A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In ... A prominent observation of the solar system is that the mass and gas content of Jovian planets decrease outward with orbital radius, except that, in terms of these properties, Neptune is almost the same as Uranus. In previous studies, the solar nebula was assumed to preexist and the formation process of the solar nebula was not considered. It was therefore assumed that planet formation at different radii started at the same time in the solar nebula. We show that planet formation at different radii does not start at the same time and is delayed at large radii. We suggest that this delay might be one of the factors that causes the outward decrease in the masses of Jovian planets. The nebula starts to form from its inner part because of the inside-out collapse of its progenitorial molecular cloud core. The nebula then expands outward due to viscosity. Material first reaches a small radius and then reaches a larger radius, so planet formation is delayed at the large radius. The later the material reaches a planet's location, the less time it has to gain mass and gas content. Hence, the delay tends to cause the outward decrease in mass and gas content of Jovian planets. Our nebula model shows that the material reaches Jupiter, Saturn, Uranus and Neptune at t = 0.40, 0.57, 1.50 and 6.29 × 10^6 yr, respectively. We discuss the effects of time delay on the masses of Jovian planets in the framework of the core accretion model of planet formation. Saturn's formation is not delayed by much time relative to Jupiter so that they both reach the rapid gas accretion phase and become gas giants. However, the delay in formation of Uranus and Neptune is long and might be one of the factors that cause them not to reach the rapid gas accretion phase before the gas nebula is dispersed. Saturn has less time to go through the rapid gas accretion, so Saturn's mass and gas content are significantly less than those of Jupiter. 展开更多
关键词 planetary systems -- planets and satellites: formation -- planets and satellites: gaseous planets -- planets and satellites: individual (Jovian planets) -- protoplanetary disks
下载PDF
IDE Hard Disk Digital Image Record System Based on File Format
19
作者 Yang,Jianjun Wang,Huachuang Zhang,Yao 《微计算机信息》 2004年第10期111-111,110,共2页
In this hard disk record system, the IDE hard disk is controlled by FPGA(Field Programmable Gate Array), and the image is recorded to file format directly. In the same time, the recorded image is real-time and lossles... In this hard disk record system, the IDE hard disk is controlled by FPGA(Field Programmable Gate Array), and the image is recorded to file format directly. In the same time, the recorded image is real-time and lossless. All of this is convenient for subsequent processing. 展开更多
关键词 文件格式 FAT32格式 FPGA IDE 硬盘格式 数字图像记录系统
下载PDF
基于无量纲的轨道参数开展卫星性质统计研究
20
作者 王吉绯 王炜 《天文学报》 CAS CSCD 北大核心 2024年第1期106-116,共11页
目前已发现了285颗围绕太阳系八大行星公转的卫星,它们的轨道和物理性质呈现了丰富多样性.目前为止,几乎所有的卫星研究工作都基于单个卫星系统或者卫星群,似乎缺少统一的研究.提出了一个新的与行星性质无关、只与恒星半径有关的轨道参... 目前已发现了285颗围绕太阳系八大行星公转的卫星,它们的轨道和物理性质呈现了丰富多样性.目前为止,几乎所有的卫星研究工作都基于单个卫星系统或者卫星群,似乎缺少统一的研究.提出了一个新的与行星性质无关、只与恒星半径有关的轨道参数n,定义为以太阳半径为单位的轨道半长轴的自然对数.不同行星的卫星的n值都存在双极分布,绝大部分卫星在n≥2区间,其次在n≤-1区间,位于中间区域的行星则很少.从卫星物理参数和轨道参数与n的关系中发现,分属六大行星的卫星有明显的共同特征.首先,轨道偏心率和轨道倾角偏大的卫星的n值都在3.5左右,它们都是巨行星的不规则卫星.其次,n值在-1和1之间的卫星绝大部分体积大、质量大、反照率高、自转速度慢.从文献中找到11颗系外卫星候选体,获得了它们轨道n值和卫星质量,发现后者也是在-1 <n<1区间最大,其他区间偏小.这些统一的规律暗示,太阳系内不同行星的卫星形成机制以及太阳系外卫星的形成机制可能一样或类似. 展开更多
关键词 行星和卫星:基本参数 行星和卫星:形成 行星和卫星:动力学演化和稳定性 原行星盘 太阳系外卫星
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部