Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most resear...Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.展开更多
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and cos...The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.展开更多
Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during...Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.展开更多
The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factor...The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.展开更多
In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as...In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.展开更多
Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of ...Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.展开更多
The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconi...The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.展开更多
In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The ...In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.展开更多
The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure an...The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure and solid particle erosion resistance for CF/PC composites after ultraviolet irradiation were studied. It was shown that ultraviolet irradiation causes photo-oxygen aging and photo-fries re-arrangement of the composite, and the result was confirmed by FTIR. We correlated the solid particle erosion resistance with aging time, and found that the solid particle erosion resistance of CF/PC composites greatly decreased by UVB irradiation during 15 hours. Furthermore, the eroded material surface was analyzed using scanning electron microscope (SEM). It suggests that ultraviolet aging leads to plasticization and degradation, resulting in reduction of erosion resistance of the composite.展开更多
Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and...Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and hydrocarbon generation and destruction.Polar compounds are the main source of saturated and aromatic hydrocarbon,gas and coke fractions.Molecular compositions in pyrolyzates vary systematically with increasing pyrolysis temperatures.High molecular weight n-alkanes(C26^+) are gradually destructed during pyrolysis due to thermal cracking.Moderate molecular weight n-alkanes(C21-C25)show the highest thermal stability in designed pyrolysis temperatures.The loss of low molecular weight n-alkanes(C20^-)might be caused by volatilization during pyrolysis,which may alter commonly used molecular parameters such as∑n-C20^-/∑n-C21^+,Pr/n-C17 and Ph/n-C18.Aromatic hydrocarbons were generated from 300 to 425℃,then condensation and dealkylation have been initiated at 425℃as evidenced by decreased summed alkylnaphthalenes to alkylphenanthrenes ratios and increased unsubstituted aromatics to substituted homologs ratios in higher temperatures.The occurrence of anthracene and benz[a]anthracene in pyrolysates indicates pyrogenic origin,while fluoranthene shows unexpected behaviors during pyrolysis.Ratios derived from them are not always reliable for pyrogenic source input diagnosis in environmental samples.展开更多
In May 2012,the Emilia region of the Po Valley was struck by a seismic crisis with two major events of magnitude M_w 6.1and M_w 5.9.The first event induced widespread sand blows formed along buried channels and old cr...In May 2012,the Emilia region of the Po Valley was struck by a seismic crisis with two major events of magnitude M_w 6.1and M_w 5.9.The first event induced widespread sand blows formed along buried channels and old crevasse splay deposits.In the days immediately following the events,the detailed mapping and sampling of the erupted sand was fundamental to record all the seismically-induced phenomena.The study of a trench dug across large fractures at San Carlo(Ferrara)provided also valuable information on the sand blows mechanism and regome.The sedimentological and compositional characteristics of the fracture-filling materials indicate that the sands were erupted from a layer located between 6.8 and 7.5 m depth.Older and deeper Holocene and Pleistocene sand layers were not apparently involved in the liquefaction phenomena.展开更多
With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components wi...With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components with high saturated hydrocarbon content up to approximately 50%, while its heavy components of colloid and asphaltene is rather low (<38%); straight-chain alkane has a regular distribution concentrating mainly around C28; it has a very high atom ratio of H/C. The physical parameters of the oil sand mine are within the range of common heavy oils. Such chemical composition and distribution obviously differs from that of other known exposed oil sand mines. This particular property of the oil sand is formed due to the unique geographical and geological environment. Therefore, it is intended to exploit the mine with a new combined method, i.e., first drill horizontal wells and then opencut.展开更多
No-bake resin-bonded sand is commonly used in casting production.However,its air pollution is relatively serious,especially in the molding and pouring process.For this reason,it is necessary to study the gas evolution...No-bake resin-bonded sand is commonly used in casting production.However,its air pollution is relatively serious,especially in the molding and pouring process.For this reason,it is necessary to study the gas evolution characteristics of no-bake resin-bonded sand from room temperature to high temperatures,and not only the amount of gaseous products,but also the composition of the gaseous products.No-bake furan resin-bonded sand(#1),phenolic urethane no-bake resin-bonded sand(#2),and alkaline phenolic no-bake resin-bonded sand(#3)are the three most common no-bake resin-bonded sands in casting.The gas evolution volume and rate of these three no-bake resin-bonded sands were studied.Thermogravimetry-mass spectrometer(TG-MS),headspace-gas chromatography/mass spectrometer(HS-GC/MS),and pyrolysis-gas chromatography/mass spectrometer(PY-GC/MS)were used to measure the composition of the gaseous products emitted from binders at room temperature and high temperatures.The differences between formaldehyde,heterocyclic aromatic compounds(HAC),monocyclic aromatic hydrocarbons(MAH),and polycyclic aromatic hydrocarbons(PAHs)gaseous products from the three types of no-bake resin-bonded sands during the molding and casting process were compared.From the perspective of environmental protection,alkaline phenolic no-bake resin-bonded sand and no-bake furan resin-bonded sand are better than phenolic urethane no-bake resin-bonded sand.展开更多
基金granted by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2011ZX05030-005 and No.2011ZX05009-003)the National Natural Science Foundation of China (Grant No. 40902035)
文摘Deep-water turbidite channels have attracted much attention as a focused issue in petroleum exploration and development. Extensive studies have been performed on the architecture of turbidite channels, and most researches have focused on their geometric shapes, sedimentary processes and controlling factors. However, little attention has been paid to the distribution patterns, distribution laws and quantitative studies of composite sand bodies of turbidite channels. Taken one slope area of the Niger Delta Basin as an example, this study conducted a semi-quantitative to quantitative analysis on architecture of composite sand bodies of turbidite channels based on cores, well logging and seismic surveys. It is shown that turbidite channel systems can be classified as confined and unconfined channel systems. For confined channel systems, the vertical evolution process involves four stages. The sinuosity of a channel system is controlled by slope, with a negative power function relationship between them. When slope gradient reaches four degrees, the channel system is nearly straight. Based on the migration direction and migration amount of single channels within channel complexes, channel composite patterns can be divided into four classes(the lateral composite, en-echelon composite, swing composite and vertical composite) and several subclasses. Various channel composite patterns show specific distribution laws spatially. For meandering channel complexes at the middle-late evolution stage of confined channel systems, the lateral migration amongst single channels shows the features of integrity and succession. The sinuosity of single channels in the late period is greater than that in the early period, and cut-offs may occur locally when the sinuosity is larger than five degrees. This study provides a better understanding for the geological theory of deep-water sedimentary, and also improves exploitation benefits of this type of reservoirs.
基金supported by the National Natural Science Foundation of China (No.51379142 and No.51679163)Innovation Method Fund of China (No.2016IM030100)the Tianjin Municipal Natural Science Foundation (No.17JCYBJC22000)
文摘The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.
基金financially supported by the National Excellent Young Scientists Fund(NO.51525503)
文摘Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold.
文摘The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.
基金Funded by the Applied Basic Research in Qinghai Province(No.2021-ZJ-737)the Excellent Demonstration Courses for Graduate Students of Qinghai Minzu University(No.JK-2022-09)the Top Talents of‘Kunlun Talents High-end Innovation and Entrepreneurship Talents’of Qinghai Province。
文摘In order to prepare a new material with long-term stable performance,low cost,easy construction,and ecological environmental protection,the influence of aeolian sand on the compressive and flexural strength as well as micro morphology and phase composition of magnesium oxychloride cement(MOC)was studied.The experimental results indicate that,with the increase of content of doping sand,the compressive strength and flexural strength of MOC decrease significantly.However,when the quality ratio of aeolian sand and light burned magnesia powder is 1:8,the performance meets the actual engineering needs.Namely,the compressive strength of MOC is not less than 18 MPa,and flexural strength is not less than 4 MPa.Meanwhile,within 12 months of age,the compressive strength and flexural strength are stable.There is no obvious change in phase composition,and its main phase is still 5·1·8 phase.Microscopic appearance changes from needle-like to gel-like shape.Based on engineering applications,it is found that when the novel sand-fixing material is used in the field for one year,its macroscopic feature is not damaged,compressive strength and flexural strength are also more stable,phase composition negligibly changes,and micro morphology has also been turned into be gellike shape.These further confirm the long-term stability and weather resistance of MOC doping aeolian sand,providing theoretical and technical support for the widely application of MOC in the field of sand fixation in the future.
基金Funded by the National Natural Science Foundation of China(Nos.11162011,51468049 and 11862022)the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials+1 种基金Minjiang University(China)(No.FKLT FM1907)the Inner Mongolia Colleges and Universities Youth Science and Technology Talents Support Program(No.NJYT-17-A09)。
文摘Considering the economic and environmental benefits associated with the recycling of polyester(PET)fibres,it is vital to study the application of fibre-reinforced cement composites.According to the characteristics of the wind-blown sand environment in Inner Mongolia,the erosion resistance of the polyester fibre-reinforced cement composites(PETFRCC)with different PET fibre contents to various erosion angles,velocities and sand particle flows was investigated by the gas-blast method.Based on the actual conditions of sandstorms in Inner Mongolia,the sand erosion parameters required for testing were calculated by the similarity theory.The elastic-plastic model and rigid plastic model of PETFRCC and cement mortar were established,and the energy consumption mechanism of the model under particle impact was analyzed.The experimental results indicate that the microstructure of PETFRCC rafter hydration causes a spring-like buffering effect,and the deformation of PETFRCC under the same impact load is slightly smaller than that of cement mortar,and the damage mechanism of PETFRCC is mainly characterized by fiber deformation and slight brittle spalling of matrix.And under the most unfavorable conditions of the erosion,the erosion rate of 0.5PETFRCC is about 57.69%lower than that of cement mortar,showing better erosion resistance.
文摘The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.
文摘In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.
文摘The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure and solid particle erosion resistance for CF/PC composites after ultraviolet irradiation were studied. It was shown that ultraviolet irradiation causes photo-oxygen aging and photo-fries re-arrangement of the composite, and the result was confirmed by FTIR. We correlated the solid particle erosion resistance with aging time, and found that the solid particle erosion resistance of CF/PC composites greatly decreased by UVB irradiation during 15 hours. Furthermore, the eroded material surface was analyzed using scanning electron microscope (SEM). It suggests that ultraviolet aging leads to plasticization and degradation, resulting in reduction of erosion resistance of the composite.
基金supported by National Natural Science Foundation of China(Grant Number 41573035,41873049)the Mitacs project at University of Calgary。
文摘Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and hydrocarbon generation and destruction.Polar compounds are the main source of saturated and aromatic hydrocarbon,gas and coke fractions.Molecular compositions in pyrolyzates vary systematically with increasing pyrolysis temperatures.High molecular weight n-alkanes(C26^+) are gradually destructed during pyrolysis due to thermal cracking.Moderate molecular weight n-alkanes(C21-C25)show the highest thermal stability in designed pyrolysis temperatures.The loss of low molecular weight n-alkanes(C20^-)might be caused by volatilization during pyrolysis,which may alter commonly used molecular parameters such as∑n-C20^-/∑n-C21^+,Pr/n-C17 and Ph/n-C18.Aromatic hydrocarbons were generated from 300 to 425℃,then condensation and dealkylation have been initiated at 425℃as evidenced by decreased summed alkylnaphthalenes to alkylphenanthrenes ratios and increased unsubstituted aromatics to substituted homologs ratios in higher temperatures.The occurrence of anthracene and benz[a]anthracene in pyrolysates indicates pyrogenic origin,while fluoranthene shows unexpected behaviors during pyrolysis.Ratios derived from them are not always reliable for pyrogenic source input diagnosis in environmental samples.
文摘In May 2012,the Emilia region of the Po Valley was struck by a seismic crisis with two major events of magnitude M_w 6.1and M_w 5.9.The first event induced widespread sand blows formed along buried channels and old crevasse splay deposits.In the days immediately following the events,the detailed mapping and sampling of the erupted sand was fundamental to record all the seismically-induced phenomena.The study of a trench dug across large fractures at San Carlo(Ferrara)provided also valuable information on the sand blows mechanism and regome.The sedimentological and compositional characteristics of the fracture-filling materials indicate that the sands were erupted from a layer located between 6.8 and 7.5 m depth.Older and deeper Holocene and Pleistocene sand layers were not apparently involved in the liquefaction phenomena.
基金SupportedbyCNPCandtheNaturalScienceFoundationofHubeiProvince (No .2 0 0 0J0 2 3)
文摘With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components with high saturated hydrocarbon content up to approximately 50%, while its heavy components of colloid and asphaltene is rather low (<38%); straight-chain alkane has a regular distribution concentrating mainly around C28; it has a very high atom ratio of H/C. The physical parameters of the oil sand mine are within the range of common heavy oils. Such chemical composition and distribution obviously differs from that of other known exposed oil sand mines. This particular property of the oil sand is formed due to the unique geographical and geological environment. Therefore, it is intended to exploit the mine with a new combined method, i.e., first drill horizontal wells and then opencut.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. U1808216, 51905188)the National Key R&D Program of China (Grant No. 2020YFB1710100)
文摘No-bake resin-bonded sand is commonly used in casting production.However,its air pollution is relatively serious,especially in the molding and pouring process.For this reason,it is necessary to study the gas evolution characteristics of no-bake resin-bonded sand from room temperature to high temperatures,and not only the amount of gaseous products,but also the composition of the gaseous products.No-bake furan resin-bonded sand(#1),phenolic urethane no-bake resin-bonded sand(#2),and alkaline phenolic no-bake resin-bonded sand(#3)are the three most common no-bake resin-bonded sands in casting.The gas evolution volume and rate of these three no-bake resin-bonded sands were studied.Thermogravimetry-mass spectrometer(TG-MS),headspace-gas chromatography/mass spectrometer(HS-GC/MS),and pyrolysis-gas chromatography/mass spectrometer(PY-GC/MS)were used to measure the composition of the gaseous products emitted from binders at room temperature and high temperatures.The differences between formaldehyde,heterocyclic aromatic compounds(HAC),monocyclic aromatic hydrocarbons(MAH),and polycyclic aromatic hydrocarbons(PAHs)gaseous products from the three types of no-bake resin-bonded sands during the molding and casting process were compared.From the perspective of environmental protection,alkaline phenolic no-bake resin-bonded sand and no-bake furan resin-bonded sand are better than phenolic urethane no-bake resin-bonded sand.