In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized,...In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.展开更多
A new static induction thyristor (SITH) with a strip anode region and p- buffer layer structure (SAP-B) has been successfully designed and fabricated. This structure is composed of a p- buffer layer and lightly do...A new static induction thyristor (SITH) with a strip anode region and p- buffer layer structure (SAP-B) has been successfully designed and fabricated. This structure is composed of a p- buffer layer and lightly doped n- regions embedded in the p+-emitter. Compared with the conventional structure of a buffed-gate with a diffused source region (DSR buffed-gate), besides the simple fabrication process, the forward blocking voltage of this SITH has been increased to 1600 V from the previous value of 1000 V, the blocking gain increased from 40 to 70, and the turn-offtime decreased from 0.8 to 0.4μs.展开更多
In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving th...In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from 72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmic- drain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from -5 V to -49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.展开更多
An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 an...An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 and 2 V at a temperature of 300 and 400 K, respectively, at a collector current density of 100 A/cm2. In contrast, the on-state voltage drops of a conventional trench gate IGBT (CT-IGBT) are 1.7 and 2.4 V at a temperature of 300 and 400 K, respectively. Compared to the CT-IGBT, the ACT-IGBT has a lower on-state voltage drop and a larger forward bias safe operating area. Meanwhile, the forward blocking characteristics and turn-off performance of the ACT-IGBT are also analyzed.展开更多
基金Project supported by the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0915)the National Natural Science Foundation of China(Grant No.61204085)
文摘In this paper, the influence of a drain field plate (FP) on the forward blocking characteristics of an AlGaN/GaN high electron mobility transistor (HEMT) is investigated. The HEMT with only a gate FP is optimized, and breakdown voltage VBR is saturated at 1085 V for gate–drain spacing LGD ≥ 8 μm. On the basis of the HEMT with a gate FP, a drain FP is added with LGD=10 μm. For the length of the drain FP LDF ≤ 2 μm, VBR is almost kept at 1085 V, showing no degradation. When LDF exceeds 2 μm, VBR decreases obviously as LDF increases. Moreover, the larger the LDF, the larger the decrease of VBR. It is concluded that the distance between the gate edge and the drain FP edge should be larger than a certain value to prevent the drain FP from affecting the forward blocking voltage and the value should be equal to the LGD at which VBR begins to saturate in the first structure. The electric field and potential distribution are simulated and analyzed to account for the decrease of VBR.
基金supported by the Scientific and Technological Development Plan of Lanzhou City of China(No.2009-1-1).
文摘A new static induction thyristor (SITH) with a strip anode region and p- buffer layer structure (SAP-B) has been successfully designed and fabricated. This structure is composed of a p- buffer layer and lightly doped n- regions embedded in the p+-emitter. Compared with the conventional structure of a buffed-gate with a diffused source region (DSR buffed-gate), besides the simple fabrication process, the forward blocking voltage of this SITH has been increased to 1600 V from the previous value of 1000 V, the blocking gain increased from 40 to 70, and the turn-offtime decreased from 0.8 to 0.4μs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61106106)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201206)
文摘In this paper, we demonstrate that a Schottky drain can improve the forward and reverse blocking voltages (BVs) simultaneously in A1GaN/GaN high-electron mobility transistors (HEMTs). The mechanism of improving the two BVs is investigated by analysing the leakage current components and by software simulation. The forward BV increases from 72 V to 149 V due to the good Schottky contact morphology. During the reverse bias, the buffer leakage in the Ohmic- drain HEMT increases significantly with the increase of the negative drain bias. For the Schottky-drain HEMT, the buffer leakage is suppressed effectively by the formation of the depletion region at the drain terminal. As a result, the reverse BV is enhanced from -5 V to -49 V by using a Schottky drain. Experiments and the simulation indicate that a Schottky drain is desirable for power electronic applications.
文摘An accumulation channel trench gate insulated gate bipolar transistor (ACT-IGBT) is proposed. The simu- lation results show that for a blocking capability of 1200 V, the on-state voltage drops of ACT-IGBT are 1.5 and 2 V at a temperature of 300 and 400 K, respectively, at a collector current density of 100 A/cm2. In contrast, the on-state voltage drops of a conventional trench gate IGBT (CT-IGBT) are 1.7 and 2.4 V at a temperature of 300 and 400 K, respectively. Compared to the CT-IGBT, the ACT-IGBT has a lower on-state voltage drop and a larger forward bias safe operating area. Meanwhile, the forward blocking characteristics and turn-off performance of the ACT-IGBT are also analyzed.