The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct...A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.展开更多
Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing t...Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing task is heavy and time-consuming. In order to increase efficiency of the 3D forward modeling, the paper will adopt MPI parallel algorithm and the several processes will deal with data in the method. Finally, we can gather the result. Through comparing the result of sequence algorithm with the result of MPI parallel algorithm, we can see the result is the same. When the number of processes is 2 to 8, the speed-up ratio is 1.97 to 5. The MPI parallel algorithm is very efficient.展开更多
This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting o...This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting of a PSS joint and a strut with fixed length.A general approximation algorithm is used to solve the problem.To avoid the extraction of root in the approximation process,the forward displacement analysis of the 8-PSS redundant parallel manipulator is transformed into another equivalent problem on the assumption that the strut is extensible while the slider is fixed.The problem is solved by a modified approximation algorithm which predicates that the manipulator will move along a pose vector to reduce the difference between the desired configuration and an instantaneous one,and the best movement should be with minimum norm and least quadratic sum.The characteristic of this modified algorithm is that its convergence domain is larger than that of the general approximation algorithm.Simulation results show that the modelified algorithm is general and can be used for the forward displacement analysis of the redundant parallel manipulator actuated by a revolute joint.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be imp...Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.展开更多
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic mo...Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.展开更多
Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy f...Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.展开更多
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data ...In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.展开更多
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—c...There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.展开更多
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic disto...Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic distortion of the output signal. The method for harmonic cancellation based on adaptive filter is proposed. The task is accomplished by generating reference signals with frequency that should be eliminated from the output. The reference inputs are weighted by the adaptive filter in such a way that it closely matches the harmonic. The output of the adaptive filter is a harmonic replica and is injected to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone, and the total harmonic distortion (THD) is greatly reduced. The weights of filter are adjusted on-line according to the control error by using least-mean-square (LMS) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed adaptive feed-forward compensator (AFC) control scheme展开更多
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave pro...To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.展开更多
Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adop...Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.展开更多
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
文摘A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.
文摘Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing task is heavy and time-consuming. In order to increase efficiency of the 3D forward modeling, the paper will adopt MPI parallel algorithm and the several processes will deal with data in the method. Finally, we can gather the result. Through comparing the result of sequence algorithm with the result of MPI parallel algorithm, we can see the result is the same. When the number of processes is 2 to 8, the speed-up ratio is 1.97 to 5. The MPI parallel algorithm is very efficient.
基金Funded by the National Natural Science Foundation of China(Grant No.50905102)the China Postdoctoral Science Foundation(Grant No.200801199)the Natural Science Foundation of Guangdong Province(Grant No.8351503101000001)
文摘This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting of a PSS joint and a strut with fixed length.A general approximation algorithm is used to solve the problem.To avoid the extraction of root in the approximation process,the forward displacement analysis of the 8-PSS redundant parallel manipulator is transformed into another equivalent problem on the assumption that the strut is extensible while the slider is fixed.The problem is solved by a modified approximation algorithm which predicates that the manipulator will move along a pose vector to reduce the difference between the desired configuration and an instantaneous one,and the best movement should be with minimum norm and least quadratic sum.The characteristic of this modified algorithm is that its convergence domain is larger than that of the general approximation algorithm.Simulation results show that the modelified algorithm is general and can be used for the forward displacement analysis of the redundant parallel manipulator actuated by a revolute joint.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.
基金supported by National Science Council under Grant No.101-2221-E-029-020-MY3
文摘Using a relaying system to provide spatial diversity and improve the system performance is a tendency in the wireless cooperative communications. Amplify-and-forward (AF) mode with a low complexity is easy to be implemented. Under the consideration of cooperative communication systems, the scenario includes one information source, M relay stations and N destinations. This work proposes a relay selection algorithm in the Raleigh fading channel. Based on the exhaustive search method, easily to realize, the optimal selection scheme can be found with a highly complicated calculation. In order to reduce the computational complexity, an approximate optimal solution with a greedy algorithm applied for the relay station selection is proposed. With different situations of the communication systems, the performance evaluation obtained by both the proposed algorithm and the exhaustive search algorithm are given for comparison. It shows the proposed algorithm could provide a solution approach to the optimal one.
基金financially supported by the National Hi-tech Research and Development Program of China(863 Program)(No.2012AA09A20103)
文摘Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.
基金supported by the National Special Plan for the 13th Five-Year Plan of China(No.2017YFC0602204-10)Independent Exploration of the Innovation Project for Graduate Students at Central South University(No.2017zzts176)+3 种基金National Natural Science Foundation of China(Nos.41574127,41404106,and 41674075)Postdoctoral Fund Projects of China(No.2017M622608)National Key R&D Program of China(No.2018YFC0603602)Natural Science Youth Fund Project of the Hunan Province,China(No.2018JJ3642)
文摘Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on(1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and(2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.
基金Heilongjiang Natural Science Foundation (F0318).
文摘In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
基金supported by National Natural Science Foundation of China(Grant No.50437010)National Hi-tech Research and Development Program of China(863Program,Grant No.2006AA05Z205)Project of Six Talented Peak of Jiangsu Province,China(Grant No.07-D-013)
文摘There are two kinds of unbalance vibrations—force vibration and displacement vibration due to the existence of unbalance excitation in active magnetic bearings(AMB) system. And two unbalance compensation methods—closed-loop feedback and open loop feed-forward are presented to reduce the force vibration. The transfer function order of the control system directly influencing the system stability will be increased when the closed-loop method is adopted, which makes the real-time compensation not easily achieved. While the open loop method would not increase the primary transfer function order, it provides conditions for real-time compensation. But the real-time compensation signals are not easy to be obtained in the open loop method. To implement real-time force compensation, a new method is proposed to reduce the force vibration caused by the rotor unbalance on the basis of AMB active control. The method realizes real-time and on-line force auto-compensation based on H∞ controller and one novel feed-forward compensation controller, which makes the rotor rotate around its inertia axis. The time-variable feed-forward compensatory signal is provided by a modified adaptive variable step-size least mean square(VSLMS) algorithm. And the relevant least mean square(LMS) algorithm parameters are used to solve the H∞ controller weighting functions. The simulation of the new method to compensate some frequency-variable and sinusoidal signals is completed by MATLAB programming, and real-time compensation is implemented in the actual AMB experimental system. The simulation and experiment results show that the compensation scheme can improve the robust stability and the anti-interference ability of the whole AMB system by using H∞ controller to achieve close-loop control, and then real-time force unbalance compensation is implemented. The proposed research provides a new control strategy containing real-time algorithm and H∞ controller for the force compensation of AMB system. And the stability of the control system is finally improved.
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.
文摘Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic distortion of the output signal. The method for harmonic cancellation based on adaptive filter is proposed. The task is accomplished by generating reference signals with frequency that should be eliminated from the output. The reference inputs are weighted by the adaptive filter in such a way that it closely matches the harmonic. The output of the adaptive filter is a harmonic replica and is injected to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone, and the total harmonic distortion (THD) is greatly reduced. The weights of filter are adjusted on-line according to the control error by using least-mean-square (LMS) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed adaptive feed-forward compensator (AFC) control scheme
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598)Foundation for Returned Students of Ministry of Education, and Foundation of China University of Geosciences (Beijing).
文摘To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
文摘Magnetotelluric sounding method based on the difference of the rock’s resistivity is an exploration method about doing research in earth’s resistivity and phase using the native electromagnetic field. The paper adopts 2D finite element method as the magnetotelluric forward method and calculates the total field by primary field (also named background field) plus secondary field. We can?get more accurate forward result through the finite element method and we can get the result effected by the dense degree of grid slightly by the total field. But the method is not effective?enough when the model is divided into relative big grid. When the frequency changes, program solves relevant equation separately. According to the feature of the algorithm, we apply MPI parallel method in the algorithm. Every process solves relevant equation. The account of frequency?that a process needs to solve in parallel computation is less than the account that the process?needs to solve in serial algorithm. We can see that the forward result is the same with the serial algorithm and proves the correctness of algorithm. We do statistics about the efficiency of the parallel algorithm. When the account of processes is from 2 to 8, the speedup is from 1.63 to 2.64. It proves the effectiveness of the parallel algorithm.