In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting o...This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting of a PSS joint and a strut with fixed length.A general approximation algorithm is used to solve the problem.To avoid the extraction of root in the approximation process,the forward displacement analysis of the 8-PSS redundant parallel manipulator is transformed into another equivalent problem on the assumption that the strut is extensible while the slider is fixed.The problem is solved by a modified approximation algorithm which predicates that the manipulator will move along a pose vector to reduce the difference between the desired configuration and an instantaneous one,and the best movement should be with minimum norm and least quadratic sum.The characteristic of this modified algorithm is that its convergence domain is larger than that of the general approximation algorithm.Simulation results show that the modelified algorithm is general and can be used for the forward displacement analysis of the redundant parallel manipulator actuated by a revolute joint.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonh...As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.展开更多
In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively est...In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.展开更多
The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but t...The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.展开更多
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplic...A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplicities of secondary charged particles in the backward and forward hemispheres are investigated.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some...A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.展开更多
In this paper two parallel algorithms for solving dense linear equations arediscussed. The algorithms are based on LU-decomposition followed by forward andbackward substitutions. The algorithms are numerically stable ...In this paper two parallel algorithms for solving dense linear equations arediscussed. The algorithms are based on LU-decomposition followed by forward andbackward substitutions. The algorithms are numerically stable and have been testedon the Sequent Balance Machine with efficient utilization of all processors.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct...A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.展开更多
Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing t...Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing task is heavy and time-consuming. In order to increase efficiency of the 3D forward modeling, the paper will adopt MPI parallel algorithm and the several processes will deal with data in the method. Finally, we can gather the result. Through comparing the result of sequence algorithm with the result of MPI parallel algorithm, we can see the result is the same. When the number of processes is 2 to 8, the speed-up ratio is 1.97 to 5. The MPI parallel algorithm is very efficient.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-or...A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.展开更多
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
基金Funded by the National Natural Science Foundation of China(Grant No.50905102)the China Postdoctoral Science Foundation(Grant No.200801199)the Natural Science Foundation of Guangdong Province(Grant No.8351503101000001)
文摘This paper presents the forward displacement analysis of an 8-PSS(prismatic-spherical-spherical)redundant parallel manipulator whose moving platform is linked to the base platform by eight kinemtic chains consisting of a PSS joint and a strut with fixed length.A general approximation algorithm is used to solve the problem.To avoid the extraction of root in the approximation process,the forward displacement analysis of the 8-PSS redundant parallel manipulator is transformed into another equivalent problem on the assumption that the strut is extensible while the slider is fixed.The problem is solved by a modified approximation algorithm which predicates that the manipulator will move along a pose vector to reduce the difference between the desired configuration and an instantaneous one,and the best movement should be with minimum norm and least quadratic sum.The characteristic of this modified algorithm is that its convergence domain is larger than that of the general approximation algorithm.Simulation results show that the modelified algorithm is general and can be used for the forward displacement analysis of the redundant parallel manipulator actuated by a revolute joint.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
文摘As for the backward and forward equation of nonhomogeneous(H, Q) -processes,we proof them in a new way. On the base of that, this paper gives the direct computational formalfor one dimensional distribution of the nonhomogeneous(H, Q) -process.
基金jointly supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502)the National Program on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-03)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.
基金Supported by National Natural Science Foundation of P.R.China (10371067) the Youth Teacher Foundation of Fok Ying Tung Education Foundation (91064)New Century Excellent Young Teachers Foundation of P. R. China (NCEF-04-0633)
文摘The maximum principle for fully coupled forward-backward stochastic control system in the global form is proved, under the assumption that the forward diffusion coefficient does not contain the control variable, but the control domain is not necessarily convex.
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475054), the Major Science and Technology Foundation of Ministry of Education of China (Grant No 205026), the Natural Science Foundation of Shanxi Province, China(Grant No 20021007) and Shanxi Provincial Foundation for Returned Scholars of China(Grant No 20031046).
文摘A detailed study of the mechanisms of the emissions of pions and protons in the forward and backward hemispheres in 4.5 A GeV/c oxygen-emulsion interactions has been carried out. The correlations between the multiplicities of secondary charged particles in the backward and forward hemispheres are investigated.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金supported by the National Natural Science Foundation of China (No. 10771122)the NaturalScience Foundation of Shandong Province of China (No. Y2006A08)the National Basic ResearchProgram of China (973 Program) (No. 2007CB814900)
文摘A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
文摘In this paper two parallel algorithms for solving dense linear equations arediscussed. The algorithms are based on LU-decomposition followed by forward andbackward substitutions. The algorithms are numerically stable and have been testedon the Sequent Balance Machine with efficient utilization of all processors.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
文摘A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis.
文摘Interpretation of geophysical material is the prospecting method. Interpretation of Gravity-megnetic data is based on data processing and inversion. When the grid is divided into several million cells, the computing task is heavy and time-consuming. In order to increase efficiency of the 3D forward modeling, the paper will adopt MPI parallel algorithm and the several processes will deal with data in the method. Finally, we can gather the result. Through comparing the result of sequence algorithm with the result of MPI parallel algorithm, we can see the result is the same. When the number of processes is 2 to 8, the speed-up ratio is 1.97 to 5. The MPI parallel algorithm is very efficient.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
基金Supported by National Science Foundation of China(Grant 10871179)the National Basic Research Programme of China(Grant 2008CB717806)the Department of Education of Zhejiang Province(GrantY200803559).
文摘A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.