This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals ...This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.展开更多
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ...In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.展开更多
The optimal control problem of fully coupled forward-backward stochastic systems is put forward. A necessary condition, called maximum principle, for an optimal control of the problem with the control domain being con...The optimal control problem of fully coupled forward-backward stochastic systems is put forward. A necessary condition, called maximum principle, for an optimal control of the problem with the control domain being convex is proved.展开更多
This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backw...This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backward stochastic differential equation theory with certain classical convex variational techniques, the necessary maximum principle is proved for the partially observed optimal control, where the control domain is a nonempty convex set. Under certain convexity assumptions, the author also gives the sufficient conditions of an optimal control for the aforementioned optimal optimal problem. To illustrate the theoretical result, the author also works out an example of partial information linear-quadratic optimal control, and finds an explicit expression of the corresponding optimal control by applying the necessary and sufficient maximum principle.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some...A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.展开更多
The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.I...The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno...The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.展开更多
In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the meas...In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the measurement.In the successive relay,two cooperative relay nodes are adopted to forward the signals alternatively,thereby existing switching characteristics and inter-relay interferences(IRI).Since the filter-and-forward scheme is employed,the signal received by the relay is retransmitted after it passes through a linear filter.The objective of the paper is to concurrently design optimal recursive filters for FFSR and stochastic systems against switching characteristics and IRI of relays.First,a uniform measurement model is proposed by analyzing the transmission mechanism of FFSR.Then,novel filter structures with switching parameters are constructed for both FFSR and stochastic systems.With the help of the inductive method,filtering error covariances are presented in the form of coupled difference equations.Next,the desired filter gain matrices are further obtained by minimizing the trace of filtering error covariances.Moreover,the stability performance of the filtering algorithm is analyzed where the uniform bound is guaranteed on the filtering error covariance.Finally,the effectiveness of the proposed filtering method over FFSR is verified by a three-order resistance-inductance-capacitance circuit system.展开更多
Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential s...Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.展开更多
Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a ...Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].展开更多
We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results a...We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results are presented,and it is found that the influence of the stochastic mixture on radiative transfer is clearly parameter-dependent.Our results confirm that previous multidimensional results obtained in different studies are basically consistent,which is interpreted in terms of the relationship between the photon mean free path l_(p)and the system size L.Nonlinear effects,including those due to scattering and radiation-material coupling,are also discussed.To further understand the particle size effect,we employ a dimensionless parameter l_(p)/L,from which a critical particle size can be derived.On the basis of further 2D simulations,we find that an inhomogeneous mix is obtained for l_(p)/L>0.1.Furthermore,2D material temperature distributions reveal that self-shielding and particle-particle shielding of radiation occur,and are enhanced when l_(p)/L is increased.Our work is expected to provide benchmark results to verify proposed homogenized models and/or other codes for stochastic radiative transfer in realistic physical scenarios.展开更多
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi...In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.展开更多
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g...In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.展开更多
The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it consi...The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.展开更多
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedba...In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.展开更多
Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are ...Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.展开更多
基金supported by the National Key Research and Development Program of China(2022YFA1006103,2023YFA1009203)the National Natural Science Foundation of China(61925306,61821004,11831010,61977043,12001320)+2 种基金the Natural Science Foundation of Shandong Province(ZR2019ZD42,ZR2020ZD24)the Taishan Scholars Young Program of Shandong(TSQN202211032)the Young Scholars Program of Shandong University。
文摘This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.
基金supported by the National Natural Science Foundation of China under Grant Nos.12122401 and 12074007.
文摘In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.
文摘The optimal control problem of fully coupled forward-backward stochastic systems is put forward. A necessary condition, called maximum principle, for an optimal control of the problem with the control domain being convex is proved.
基金This research is supported by the National Nature Science Foundation of China under Grant Nos 11001156, 11071144, the Nature Science Foundation of Shandong Province (ZR2009AQ017), and Independent Innovation Foundation of Shandong University (IIFSDU), China.
文摘This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backward stochastic differential equation theory with certain classical convex variational techniques, the necessary maximum principle is proved for the partially observed optimal control, where the control domain is a nonempty convex set. Under certain convexity assumptions, the author also gives the sufficient conditions of an optimal control for the aforementioned optimal optimal problem. To illustrate the theoretical result, the author also works out an example of partial information linear-quadratic optimal control, and finds an explicit expression of the corresponding optimal control by applying the necessary and sufficient maximum principle.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金supported by the National Natural Science Foundation of China (No. 10771122)the NaturalScience Foundation of Shandong Province of China (No. Y2006A08)the National Basic ResearchProgram of China (973 Program) (No. 2007CB814900)
文摘A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
基金supported by Basic Research Program of China (Grant No.2007CB814904)National Natural Science Foundation of China (Grant No.10325101)Natural Science Foundation of Zhejiang Province (Grant No.Y605478,Y606667)
文摘The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金National Natural Science Foundation of China(Nos.12272283,12172266).
文摘The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer.
基金supported in part by the National Natural Science Foundation of China(62103004,62273088,62273005,62003121)Anhui Provincial Natural Science Foundation of China(2108085QA13)+4 种基金the Natural Science Foundation of Zhejiang Province(LY24F030006)the Science and Technology Plan of Wuhu City(2022jc24)Anhui Polytechnic University Youth Top-Notch Talent Support Program(2018BJRC009)Anhui Polytechnic University High-End Equipment Intelligent Control Innovation Team(2021CXTD005)Anhui Future Technology Research Institute Foundation(2023qyhz08,2023qyhz09)。
文摘In this paper,the recursive filtering problem is considered for stochastic systems over filter-and-forward successive relay(FFSR)networks.An FFSR is located between the sensor and the remote filter to forward the measurement.In the successive relay,two cooperative relay nodes are adopted to forward the signals alternatively,thereby existing switching characteristics and inter-relay interferences(IRI).Since the filter-and-forward scheme is employed,the signal received by the relay is retransmitted after it passes through a linear filter.The objective of the paper is to concurrently design optimal recursive filters for FFSR and stochastic systems against switching characteristics and IRI of relays.First,a uniform measurement model is proposed by analyzing the transmission mechanism of FFSR.Then,novel filter structures with switching parameters are constructed for both FFSR and stochastic systems.With the help of the inductive method,filtering error covariances are presented in the form of coupled difference equations.Next,the desired filter gain matrices are further obtained by minimizing the trace of filtering error covariances.Moreover,the stability performance of the filtering algorithm is analyzed where the uniform bound is guaranteed on the filtering error covariance.Finally,the effectiveness of the proposed filtering method over FFSR is verified by a three-order resistance-inductance-capacitance circuit system.
基金supported in part by the National Natural Science Foundation of China(11771001)the Key Natural Science Research Project of Universities of Anhui Province,China(2022AH050108)。
文摘Dear Editor,This letter addresses the synchronization problem of a class of delayed stochastic complex dynamical networks consisting of multiple drive and response nodes.The aim is to achieve mean square exponential synchronization for the drive-response nodes despite the simultaneous presence of time delays and stochastic noises in node dynamics.
文摘Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].
基金financial support by the National Natural Science Foundation of China(Grant No.12374259)funded by the National Natural Science Foundation of China under Grant No.12375235。
文摘We study radiative transfer in participating binary stochastic mixtures in two dimensions(2D)by developing an accurate and efficient simulation tool.For two different sets of physical parameters,2D benchmark results are presented,and it is found that the influence of the stochastic mixture on radiative transfer is clearly parameter-dependent.Our results confirm that previous multidimensional results obtained in different studies are basically consistent,which is interpreted in terms of the relationship between the photon mean free path l_(p)and the system size L.Nonlinear effects,including those due to scattering and radiation-material coupling,are also discussed.To further understand the particle size effect,we employ a dimensionless parameter l_(p)/L,from which a critical particle size can be derived.On the basis of further 2D simulations,we find that an inhomogeneous mix is obtained for l_(p)/L>0.1.Furthermore,2D material temperature distributions reveal that self-shielding and particle-particle shielding of radiation occur,and are enhanced when l_(p)/L is increased.Our work is expected to provide benchmark results to verify proposed homogenized models and/or other codes for stochastic radiative transfer in realistic physical scenarios.
文摘In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.
基金supported by the Simons Foundation:Collaboration Grantssupported by the AFOSR grant FA9550-18-1-0383.
文摘In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.
文摘The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.
基金The NSF(10671112)of ChinaNational Basic Research Program(973 Program)(2007CB814904)of Chinathe NSF(Z2006A01)of Shandong Province and the Chinese New Century Young Teachers Program
文摘In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
基金Project supported by the National Natural Science Foundation of China (Grant No.12072025)the Beijing Natural Science Foundation (Grant No.1222015)。
文摘Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.