A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved associa...A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error.展开更多
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ...The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.展开更多
Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo...Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.展开更多
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missi...Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.展开更多
The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper in...The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.展开更多
In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) ...In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.展开更多
Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexi...Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.展开更多
It is a challenge to evaluate the conditions of railway track without interruption of regular traffic. In this paper, the authors introduce the detection of cavities under the railway substructure by using forward-loo...It is a challenge to evaluate the conditions of railway track without interruption of regular traffic. In this paper, the authors introduce the detection of cavities under the railway substructure by using forward-looking ground penetrating radar (FLGPR). Main advantages of FLGPR are that such a system can illuminate a large area and can stand off a long distance over its down-looking counterpart. Two methods, frequency wave-number (F-W) synthetic aperture imaging (SAI) and beam-forming by delay and sum (DAS), are applied to process the collected data. Analysis and measuring show that the distinct radar image of the cavity beneath the substructure 1.2 m deep can be formed by these two methods.展开更多
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ...Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.展开更多
In the framework of an overlapping generations model, forward-looking monetary policy roles and backward-looking monetary policy rules were investigated. It is shown that the monetary steady state is more likely to be...In the framework of an overlapping generations model, forward-looking monetary policy roles and backward-looking monetary policy rules were investigated. It is shown that the monetary steady state is more likely to be indeterminate under an active forwardlooking rule than under the corresponding backward-looking rule. It is also shown that backward-looking roles can render the monetary steady state unstable.展开更多
For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the ...For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.展开更多
It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a ...It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a fast segmen-tation algorithm is proposed on the basis of the gray value characteristics of sonar images.This algorithm is endowed with the advantage in no need of segmentation thresholds.To realize this goal,we follow the undermentioned steps:first,calcu-late the gray matrix of the fuzzy image background.After adjusting the gray value,the image is divided into three regions:background region,buffer region and target regions.Afterfiltering,we reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts.Finally,the remaining noise is removed by morphological processing.The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar images quickly and effectively.Thus,the stable and feasible method is testified.展开更多
Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the t...Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the target for observers.The target feature information of an SSS image is similar to the background information,and a small target has less pixel information;therefore,accu-rately identifying and locating small targets in SSS images is challenging.We collect the SSS images of iron metal balls(with a diameter of 1m)and rocks to solve the problem of target misclassification.Thus,the dataset contains two types of targets,namely,‘ball’and‘rock’.With the aim to enable AUVs to accurately and automatically identify small underwater targets in SSS images,this study designs a multisize parallel convolution module embedded in state-of-the-art Yolo5.An attention mechanism transformer and a convolutional block attention module are also introduced to compare their contributions to small target detection accuracy.The performance of the proposed method is further evaluated by taking the lightweight networks Mobilenet3 and Shufflenet2 as the backbone network of Yolo5.This study focuses on the performance of convolutional neural networks for the detection of small targets in SSS images,while another comparison experiment is carried out using traditional HOG+SVM to highlight the neural network’s ability.This study aims to improve the detection accuracy while ensuring the model efficiency to meet the real-time working requirements of AUV target detection.展开更多
Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction o...Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.展开更多
基金Supported by the National Natural Science Foundation of China(51009040)National Defence Key Laboratory of Autonomous Underwater Vehicle Technology(2008002)Scientific Service Special Funds of University in China(E091002)
文摘A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error.
文摘The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow.
基金supported by the National Key R&D Program of China(Grant No.2023YFC3010803)the National Nature Science Foundation of China(Grant No.52272424)+1 种基金the Key R&D Program of Hubei Province of China(Grant No.2023BCB123)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2023IVB079)。
文摘Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
基金supported by the Key Army Pre-research Projects of China(30107030803)
文摘Aiming at a novel missile-borne detector in the optional burst height proximity fuze, a self-adaptive high-resolution forward-looking imaging algorithm (SAHRFL-IA) is presented. The echo data are captured by the missile-borne detector in the target regions;thereby the azimuth angulation accuracy at the same distance dimension is improved dynamically. Thus, azimuth information of the targets in the detection area may be obtained accurately. The proposed imaging algorithm breaks through the conventional misconception of merely using azimuth discrimination curves under ideal conditions during monopulse angulation. The real-time echo data from the target region are used to perform error correction for this discrimination curve, and finally the accuracy of the azimuth angulation may reach the optimum at the same distance dimension. A series of experiments demonstrate the validity, reliability and high performance of the proposed imaging algorithm. Azimuth angulation accuracy may reach ten times that of the detection beam width. Meanwhile, the running time of this algorithm satisfies the requirements of missile-borne platforms.
基金Supported by the National Natural Science Foundation of China (No. 61071165)the Aviation Science Foundation (No. 20102052024)
文摘The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.
基金supported by the National Natural Science Foundation of China (61102143)the Fundamentl Research Funds for the Central Universities (ZYGX2011x003)
文摘In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.
基金supported by the National Natural Science Foundation of China(6100121161303035+1 种基金61471283)the Fundamental Research Funds for the Central Universities(K5051202016)
文摘Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60472014.
文摘It is a challenge to evaluate the conditions of railway track without interruption of regular traffic. In this paper, the authors introduce the detection of cavities under the railway substructure by using forward-looking ground penetrating radar (FLGPR). Main advantages of FLGPR are that such a system can illuminate a large area and can stand off a long distance over its down-looking counterpart. Two methods, frequency wave-number (F-W) synthetic aperture imaging (SAI) and beam-forming by delay and sum (DAS), are applied to process the collected data. Analysis and measuring show that the distinct radar image of the cavity beneath the substructure 1.2 m deep can be formed by these two methods.
基金funded by the Natural Science Foundation of Fujian Province(No.2018J01063)the Project of Deep Learning Based Underwater Cultural Relics Recognization(No.38360041)the Project of the State Administration of Cultural Relics(No.2018300).
文摘Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.
基金Project supported by National Natural Science Foundation of China (Grant No. 70071012)
文摘In the framework of an overlapping generations model, forward-looking monetary policy roles and backward-looking monetary policy rules were investigated. It is shown that the monetary steady state is more likely to be indeterminate under an active forwardlooking rule than under the corresponding backward-looking rule. It is also shown that backward-looking roles can render the monetary steady state unstable.
基金supported by the National Natural Science Foundation of China(61640006)the Natural Science Foundation of Shannxi Province,China(2019JM-386).
文摘For forward-looking array synthetic aperture radar(FASAR),the scattering intensity of ground scatterers fluctuates greatly since there are kinds of vegetations and topography on the surface of the ground,and thus the signal-to-noise ratio(SNR)of its echo signals corresponding to different vegetations and topography also varies obviously.Owing to the reason known to all,the performance of the sparse reconstruction of compressed sensing(CS)becomes worse in the case of lower SNR,and the quality of the sparse three-dimensional imaging for FASAR would be affected significantly in the practical application.In this paper,the spatial continuity of the ground scatterers is introduced to the sparse recovery algorithm of CS in the threedimensional imaging for FASAR,in which the weighted least square method of the cubic interpolation is used to filter out the bad and isolated scatterer.The simulation results show that the proposed method can realize the sparse three-dimensional imaging of FASAR more effectively in the case of low SNR.
基金supported by Open Fund Project of China Key Laboratory of Submarine Geoscience(KLSG1802)Science&Technology Project of China Ocean Mineral Resources Research and Development Association(DY135-N1-1-05)Science&Technology Project of Zhoushan city of Zhejiang Province(2019C42271,2019C33205).
文摘It has remained a hard nut for years to segment sonar images of jacket installation environment,most of which are noisy images with inevitable blur after noise reduction.For the purpose of solutions to this problem,a fast segmen-tation algorithm is proposed on the basis of the gray value characteristics of sonar images.This algorithm is endowed with the advantage in no need of segmentation thresholds.To realize this goal,we follow the undermentioned steps:first,calcu-late the gray matrix of the fuzzy image background.After adjusting the gray value,the image is divided into three regions:background region,buffer region and target regions.Afterfiltering,we reset the pixels with gray value lower than 255 to binarize images and eliminate most artifacts.Finally,the remaining noise is removed by morphological processing.The simulation results of several sonar images show that the algorithm can segment the fuzzy sonar images quickly and effectively.Thus,the stable and feasible method is testified.
基金supported by the National Key Research and Development Program of China(No.2016YFC0301400).
文摘Side scan sonar(SSS)is an important means to detect and locate seafloor targets.Autonomous underwater vehicles(AUVs)carrying SSS stay near the seafloor to obtain high-resolution images and provide the outline of the target for observers.The target feature information of an SSS image is similar to the background information,and a small target has less pixel information;therefore,accu-rately identifying and locating small targets in SSS images is challenging.We collect the SSS images of iron metal balls(with a diameter of 1m)and rocks to solve the problem of target misclassification.Thus,the dataset contains two types of targets,namely,‘ball’and‘rock’.With the aim to enable AUVs to accurately and automatically identify small underwater targets in SSS images,this study designs a multisize parallel convolution module embedded in state-of-the-art Yolo5.An attention mechanism transformer and a convolutional block attention module are also introduced to compare their contributions to small target detection accuracy.The performance of the proposed method is further evaluated by taking the lightweight networks Mobilenet3 and Shufflenet2 as the backbone network of Yolo5.This study focuses on the performance of convolutional neural networks for the detection of small targets in SSS images,while another comparison experiment is carried out using traditional HOG+SVM to highlight the neural network’s ability.This study aims to improve the detection accuracy while ensuring the model efficiency to meet the real-time working requirements of AUV target detection.
文摘Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.