期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography 被引量:2
1
作者 Bin Liu Jiansen Wang +2 位作者 Senlin Yang Xinji Xu Yuxiao Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期179-190,共12页
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron... Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application. 展开更多
关键词 Tunnel geological forward-prospecting Seismic wave velocity Layered inversion Surrounding rock classification Artificial neural network(ANN)
下载PDF
Pre-stack elastic reverse time migration in tunnels based on cylindrical coordinates 被引量:1
2
作者 Yuxiao Ren Jiansen Wang +2 位作者 Zhichao Yang Xinji Xu Lei Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1933-1945,共13页
Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a... Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a certain coordinate system. However, considering the cylindrical geometry of common tunnel body, Cartesian coordinate system seemingly has limited applicability in tunnel seismic forwardprospecting. To accurately simulate the seismic signal received in tunnels, previous imaging method using decoupled non-conversion elastic wave equation is extended from Cartesian coordinates to cylindrical coordinates. The proposed method preserves the general finite-difference time-domain(FDTD)scheme in Cartesian coordinates, except for a novel wavefield calculation strategy addressing the singularity issue inherited at the cylindrical axis. Moreover, the procedure of cylindrical elastic reverse time migration(CERTM) in tunnels is introduced based on the decoupled non-conversion elastic wavefield. Its imaging effect is further validated via numerical experiments on typical tunnel models. As indicated in the synthetic examples, both the PP-and SS-images could clearly show the geological structure in front of the tunnel face without obvious crosstalk artifacts. Migration imaging using PP-waves can present satisfactory results with higher resolution information supplemented by the SS-images. The potential of applying the proposed method in real-world cases is demonstrated in a water diversion tunnel. In the end, we share our insights regarding the singularity treatment and further improvement of the proposed method. 展开更多
关键词 Tunnel geological forward-prospecting Elastic reverse time migration Cylindrical coordinates Numerical singularity Field application
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部