Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron...Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.展开更多
Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a...Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a certain coordinate system. However, considering the cylindrical geometry of common tunnel body, Cartesian coordinate system seemingly has limited applicability in tunnel seismic forwardprospecting. To accurately simulate the seismic signal received in tunnels, previous imaging method using decoupled non-conversion elastic wave equation is extended from Cartesian coordinates to cylindrical coordinates. The proposed method preserves the general finite-difference time-domain(FDTD)scheme in Cartesian coordinates, except for a novel wavefield calculation strategy addressing the singularity issue inherited at the cylindrical axis. Moreover, the procedure of cylindrical elastic reverse time migration(CERTM) in tunnels is introduced based on the decoupled non-conversion elastic wavefield. Its imaging effect is further validated via numerical experiments on typical tunnel models. As indicated in the synthetic examples, both the PP-and SS-images could clearly show the geological structure in front of the tunnel face without obvious crosstalk artifacts. Migration imaging using PP-waves can present satisfactory results with higher resolution information supplemented by the SS-images. The potential of applying the proposed method in real-world cases is demonstrated in a water diversion tunnel. In the end, we share our insights regarding the singularity treatment and further improvement of the proposed method.展开更多
基金The research work described herein was funded by the National Natural Science Foundation of China(Grant No.51922067)The Key Research and Development Plan of Shandong Province of China(Grant No.2020ZLYS01)Taishan Scholars Program of Shan-dong Province of China(Grant No.tsqn201909003).
文摘Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.
基金funded by the National Natural Science Foundation of China (Grant Nos. 52021005 and 51739007)the Key Research and Development Plan of Shandong Province (Grant No. 2020ZLYS01)。
文摘Seismic forward-prospecting in tunnels is an important step to ensure excavation safety. Nowadays, most advanced imaging techniques in seismic exploration involve calculating the solution of elastic wave equation in a certain coordinate system. However, considering the cylindrical geometry of common tunnel body, Cartesian coordinate system seemingly has limited applicability in tunnel seismic forwardprospecting. To accurately simulate the seismic signal received in tunnels, previous imaging method using decoupled non-conversion elastic wave equation is extended from Cartesian coordinates to cylindrical coordinates. The proposed method preserves the general finite-difference time-domain(FDTD)scheme in Cartesian coordinates, except for a novel wavefield calculation strategy addressing the singularity issue inherited at the cylindrical axis. Moreover, the procedure of cylindrical elastic reverse time migration(CERTM) in tunnels is introduced based on the decoupled non-conversion elastic wavefield. Its imaging effect is further validated via numerical experiments on typical tunnel models. As indicated in the synthetic examples, both the PP-and SS-images could clearly show the geological structure in front of the tunnel face without obvious crosstalk artifacts. Migration imaging using PP-waves can present satisfactory results with higher resolution information supplemented by the SS-images. The potential of applying the proposed method in real-world cases is demonstrated in a water diversion tunnel. In the end, we share our insights regarding the singularity treatment and further improvement of the proposed method.