期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aeroelastic Analysis and Optimization of High-aspect-ratio Composite Forward-swept Wings 被引量:9
1
作者 万志强 颜虹 +1 位作者 刘德广 杨超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期317-325,共9页
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit... In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed. 展开更多
关键词 aeroeiasticity structural optimization high-aspect-ratio wing forward-swept wing COMPOSITE
下载PDF
Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition 被引量:4
2
作者 Lei Juanmian Zhao Shuai Wang Suozhu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期914-923,共10页
This paper investigates the influence of forward-swept wing (FSW) positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5). The numerical method based on Reynolds-averaged Navier-... This paper investigates the influence of forward-swept wing (FSW) positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5). The numerical method based on Reynolds-averaged Navier-Stokes (RANS) equations, Spalart-Allmaras (S-A) turbulence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift-drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pressure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. 展开更多
关键词 Aerodynamic characteristics Downwash effect forward-swept wing Numerical simulation Supersonic flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部