Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showe...Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.展开更多
Pillar stability is one of important aspects for underground mines.Generally,the stability of the pillars is evaluated empirically based on case studies and site-specific rock mass conditions in mines.Nevertheless the...Pillar stability is one of important aspects for underground mines.Generally,the stability of the pillars is evaluated empirically based on case studies and site-specific rock mass conditions in mines.Nevertheless the empirical approach applicability can sometimes be constrained.The numerical-based approaches are potentially more useful as parametric studies can be undertaken and,if calibrated,can be more representative.Both empirical and numerical approaches are dependent on the strength evaluation of the pillars while the strain developing in the pillars is seldom taken into consideration.In this paper,gypsum and sandstone samples were tested in laboratory with different width-to-height ratios (W/H) to adapt the strain evaluation method to the laboratory-based pillars.A correlation was then developed between the strain and the width-to-height ratio for pillar monitoring purposes.Based on the results,a flowchart was created to conduct back analysis for the existing pillars to evaluate their stability and design new pillars,considering the strain analysis of the existing pillars with the W/H ratios modelled.展开更多
基金sponsored by Coal and Energy Research Bureau and CDC-NIOSH under Grant No.R01OH009532
文摘Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
文摘Pillar stability is one of important aspects for underground mines.Generally,the stability of the pillars is evaluated empirically based on case studies and site-specific rock mass conditions in mines.Nevertheless the empirical approach applicability can sometimes be constrained.The numerical-based approaches are potentially more useful as parametric studies can be undertaken and,if calibrated,can be more representative.Both empirical and numerical approaches are dependent on the strength evaluation of the pillars while the strain developing in the pillars is seldom taken into consideration.In this paper,gypsum and sandstone samples were tested in laboratory with different width-to-height ratios (W/H) to adapt the strain evaluation method to the laboratory-based pillars.A correlation was then developed between the strain and the width-to-height ratio for pillar monitoring purposes.Based on the results,a flowchart was created to conduct back analysis for the existing pillars to evaluate their stability and design new pillars,considering the strain analysis of the existing pillars with the W/H ratios modelled.