针对深大基坑人工监测中监测不及时、监测数据精度低、监测数据少等问题,以武汉谌家矶大道基坑工程为依托,利用自动化监测与采集设备获得了基坑变形、受力等监测数据,利用前端开发工具Visual Studio Code和后端开发工具IntelliJ构建了...针对深大基坑人工监测中监测不及时、监测数据精度低、监测数据少等问题,以武汉谌家矶大道基坑工程为依托,利用自动化监测与采集设备获得了基坑变形、受力等监测数据,利用前端开发工具Visual Studio Code和后端开发工具IntelliJ构建了深基坑自动化监测与智能预警云平台。研究结果表明,支护桩最大水平位移在0.4倍支护桩长位置处,地表沉降随基坑开挖深度增加而增大,支撑轴力随基坑开挖深度增加而线性增大且轴力增长速率随后续支撑施加而降低。深大基坑自动化监测及智能预警平台实现了基坑施工全过程中自动化监测、智能动态预测与风险评估。展开更多
文摘针对深大基坑人工监测中监测不及时、监测数据精度低、监测数据少等问题,以武汉谌家矶大道基坑工程为依托,利用自动化监测与采集设备获得了基坑变形、受力等监测数据,利用前端开发工具Visual Studio Code和后端开发工具IntelliJ构建了深基坑自动化监测与智能预警云平台。研究结果表明,支护桩最大水平位移在0.4倍支护桩长位置处,地表沉降随基坑开挖深度增加而增大,支撑轴力随基坑开挖深度增加而线性增大且轴力增长速率随后续支撑施加而降低。深大基坑自动化监测及智能预警平台实现了基坑施工全过程中自动化监测、智能动态预测与风险评估。