期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bearing Capacity of Reinforced Foundation Beds on Soft Non-Homogeneous Ground
1
作者 K. Rajyalakshmi Madhira R. Madhav K. Ramu 《Journal of Civil Engineering and Architecture》 2011年第8期759-764,共6页
The reinforced two layered foundation bed considered for study consists of a layer of granular fill overlying soft non-homogeneous clay with inclusion or reinforcement (geosymhetic strips, grids or sheets) in single... The reinforced two layered foundation bed considered for study consists of a layer of granular fill overlying soft non-homogeneous clay with inclusion or reinforcement (geosymhetic strips, grids or sheets) in single layer at soil-granular fill interface A method is developed to estimate the bearing capacity of a strip footing on the surface of a reinforced foundation bed over a finite layer of clay whose undrained strength increases linearly with depth incorporating the contribution of axial resistance of the reinforcement together with those of granular fill and soft ground. Parametric studies presented quantify the improvement in bearing capacity. 展开更多
关键词 reinforced foundation beds bearing capacity ratio (BCR) reinforcement.
下载PDF
Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct 被引量:6
2
作者 Kai Xu Ming Huang +2 位作者 Jiajie Zhen Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期1011-1022,共12页
A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choi... A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation (EICP) Plant-based urease Underground cable duct foundation reinforcement
下载PDF
Simulation Study of Foundations Reinforced with Horizontal-Vertical Inclusions Using Particle Flow Code 被引量:2
3
作者 侯娟 张孟喜 李培培 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第3期311-316,共6页
A two-dimensionM discrete element code, particle flow code (PFC2D), is employed to investigate foundations reinforced with horizontal-vertical (H-V) inclusions. The initial states and loading processes of both unr... A two-dimensionM discrete element code, particle flow code (PFC2D), is employed to investigate foundations reinforced with horizontal-vertical (H-V) inclusions. The initial states and loading processes of both unreinforced and H-V reinforced foundations are simulated by PFC2D method. The interface between particles and reinforcements, and the reinforcement mechanism of the H-V reinforced foundations are studied through stress distribution graphs, displacement vector graphs and contact force graphs. The simulation results demonstrate that the vertical elements of the H-V reinforcement keep the particles from being displaced under the applied load. The H-V reinforcement can distribute the load uniformly over a wider area, thereby improving the bearing capacity of soil foundation. 展开更多
关键词 reinforced foundation particle flow code (PFC2D) horizontal-vertical (H-V) reinforcement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部