In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or set...A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.展开更多
The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for ...The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.展开更多
The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The pa...The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The parameters in the model are determined by cyclic triaxial soil tests. A method for analyzing the stability of offshore soft foundation under wave loads is given by combining the model with pseudo-static creep analysis. An example is analyzed by the method. The results show that the horizontal and vertical stability of foundations under wave loads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes of shallow foundations.展开更多
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh...The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.展开更多
The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan...The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan penetration into double layered soils is investigated numerically. The soil profile is set up as a stronger soil layer overlaying a softer soil layer, with the soil strength ratio (bottom soil strength / top soil strength) varied from 0.1 to 1.0 (1 means uniform soil). The bearing behaviour is discussed and the bearing capacity factors are given for various cases involving different layer thicknesses and different strength ratios of the two clay layers. The development of the plastic zones and the effect of soil self-weight on the bearing capacity are also discussed. From this study, it is found that, when a spudcan is distant from the soil layer boundary, the spudcan can be analysed with single soil layer data. However, when a spudcan becomes closer to the soil boundary layer, the influence of the lower soft soil layer is significant, and the bearing capacity of the spudcan decreases. The critical distance is an indication of the occurrence of “punch through' failure. The critical distance between the spudcan and the layer boundary is larger for a rough spudcan than the one for a smooth one, and the critical distance decreases with increasing soil strength ratio. The depth of cavity formed during initial spudcan penetration depends on the top layer soil strength, soil strength ratio and unit soil self-weight, and the cavity affects the spudcan bearing behaviour as well.展开更多
The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ...The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison ...Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.展开更多
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and...To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.展开更多
Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and c...Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and characteristics,the in situ conditions may require reinforcement to restrain instability and construction settlements.Granular columns reinforced by geosynthetic material are widely used to reduce settlements of embankments on soft clays.They also accelerate the consolidation rate by reducing the drainage path’s length and increasing the foundation soil’s bearing capacity.In this study,the performance of encased and layered granular columns in soft clay is investigated and discussed.The numerical results show the significance of geosynthetic stiffness and the column length on the embankment settlements.Furthermore,the results show that granular columns may play an important role in dissipating the excess pore water pressures and accelerating the consolidation settlements of embankments on soft clays.展开更多
The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were obse...The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.展开更多
Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological enviro...Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.展开更多
Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loadi...Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loading from lower position and evaluates the effectiveness of this method under various boundary conditions by means of finite element method (FEM) on the basis of Biot's consolidation theory.展开更多
Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-W...Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-West Dyke, Lianyungang Port, including the technical characteristics and the effect, selection of explosion parameters, workmanship of construction, requirements of quality and inspection, and the like.展开更多
It is nowadays well reported that collapsible soils spread in many countries, including United States, Russia, China, South America (e.g. Brazil), South and North Africa (e.g. Egypt, Algeria), Middle East (e.g. Saudi ...It is nowadays well reported that collapsible soils spread in many countries, including United States, Russia, China, South America (e.g. Brazil), South and North Africa (e.g. Egypt, Algeria), Middle East (e.g. Saudi Arabia) and many countries in Eastern Europe. In general, collapsible soils are located in arid and semi-arid regions around the world. This special type of soil is characterized by abrupt reduction in strength, excessive and sudden settlement when it becomes wet leading to failure of the structure. Construction on such a kind of soil is one of the prominent problems in geotechnical engineering. The main objectives of this study are reporting geological and geotechnical zonation maps for potentially collapsible soils in inhabited areas in Egypt. Furthermore, a design technique for foundations built on a shallow depth of Egyptian macro-porous collapsible soils (less than 4 m) is developed. The design method includes a design chart for soil collapse field classification in terms of the most governing parameters, a method for foundation settlement estimation based on a correlation between the wetting-induced collapse strain and the applied pressure, and a design practice to guide practicing engineers to select the appropriate foundation system to construct on such soil with a great degree of confidence and safety.展开更多
To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface lay...To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface layer bearing capacity to meet the construction requirement of deep processing. Based on Shantou Municipal Road Embankment Treatment Engineering and the project, the bamboo network reinforcement technology to reinforce the dredger fill super soft soil surface layer is used. The results show that the bearing capacity of hydraulic fill super soft soil surface layer is 32.6 kPa after 3 months treatment. The surface layer bearing capacity after 3 months treatment improved 323% than the early treatment and increased 695% than no processing. The results indicate that the reinforcement effect is outstanding and provide the basis for drafting the dredger fill super soft soil surface layer treatment plan.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversi...Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.展开更多
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.
文摘A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.
基金This project was financially supported by the National Natural Science Foundation of China(No.59679018)
文摘The degradation strength of soils under cyclic loading is studied and a method for determining the cyclic degradation strength with cyclic triaxial tests is given in the paper. Furthermore, a dum my static method for estimating the undrained bearing capacity for offshore soft foundation under wave loads is developed. It can consider the effect of the difference of cyclic stress for different parts of the foundation on both the degradation strength of the foundation soil and the bearing capacity so that the estimated result can better reflect the real condition of foundation under cyclic loading. The method can be applied to plane and space problem.
基金National Natral Science Foundation of China(Grant No.59679018)
文摘The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The parameters in the model are determined by cyclic triaxial soil tests. A method for analyzing the stability of offshore soft foundation under wave loads is given by combining the model with pseudo-static creep analysis. An example is analyzed by the method. The results show that the horizontal and vertical stability of foundations under wave loads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes of shallow foundations.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012810)the Fundamental Research Funds for the Central Universities(Grant No.2009B15114)
文摘The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.
文摘The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan penetration into double layered soils is investigated numerically. The soil profile is set up as a stronger soil layer overlaying a softer soil layer, with the soil strength ratio (bottom soil strength / top soil strength) varied from 0.1 to 1.0 (1 means uniform soil). The bearing behaviour is discussed and the bearing capacity factors are given for various cases involving different layer thicknesses and different strength ratios of the two clay layers. The development of the plastic zones and the effect of soil self-weight on the bearing capacity are also discussed. From this study, it is found that, when a spudcan is distant from the soil layer boundary, the spudcan can be analysed with single soil layer data. However, when a spudcan becomes closer to the soil boundary layer, the influence of the lower soft soil layer is significant, and the bearing capacity of the spudcan decreases. The critical distance is an indication of the occurrence of “punch through' failure. The critical distance between the spudcan and the layer boundary is larger for a rough spudcan than the one for a smooth one, and the critical distance decreases with increasing soil strength ratio. The depth of cavity formed during initial spudcan penetration depends on the top layer soil strength, soil strength ratio and unit soil self-weight, and the cavity affects the spudcan bearing behaviour as well.
文摘The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金Projects(50778181, 51178472) supported by the National Natural Science Foundation of China Project(2007045) supported by the Transportation Department of Hunan Province,China
文摘Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.
基金Project(2012AA112504) supported by the National High Technology Research and Development Program of ChinaProjects(51108048,51478054) supported by the National Natural Science Foundation of China
文摘To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.
文摘Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and characteristics,the in situ conditions may require reinforcement to restrain instability and construction settlements.Granular columns reinforced by geosynthetic material are widely used to reduce settlements of embankments on soft clays.They also accelerate the consolidation rate by reducing the drainage path’s length and increasing the foundation soil’s bearing capacity.In this study,the performance of encased and layered granular columns in soft clay is investigated and discussed.The numerical results show the significance of geosynthetic stiffness and the column length on the embankment settlements.Furthermore,the results show that granular columns may play an important role in dissipating the excess pore water pressures and accelerating the consolidation settlements of embankments on soft clays.
文摘The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.
基金National Natural Science Foundations of China(Nos.41172236,41402243)
文摘Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.
文摘Strengthening soft foundation by vacuum loading from lower position is a new method of accelerating the consolidation of dredger fill. This paper presents the mechanism of soft foundation strengthening by vacuum loading from lower position and evaluates the effectiveness of this method under various boundary conditions by means of finite element method (FEM) on the basis of Biot's consolidation theory.
文摘Explosion for the treatment of underwater soft foundation is a technique newly developed in China. This paper describes the application of the method of explosion to underwater soft foundation treatment of the Great-West Dyke, Lianyungang Port, including the technical characteristics and the effect, selection of explosion parameters, workmanship of construction, requirements of quality and inspection, and the like.
文摘It is nowadays well reported that collapsible soils spread in many countries, including United States, Russia, China, South America (e.g. Brazil), South and North Africa (e.g. Egypt, Algeria), Middle East (e.g. Saudi Arabia) and many countries in Eastern Europe. In general, collapsible soils are located in arid and semi-arid regions around the world. This special type of soil is characterized by abrupt reduction in strength, excessive and sudden settlement when it becomes wet leading to failure of the structure. Construction on such a kind of soil is one of the prominent problems in geotechnical engineering. The main objectives of this study are reporting geological and geotechnical zonation maps for potentially collapsible soils in inhabited areas in Egypt. Furthermore, a design technique for foundations built on a shallow depth of Egyptian macro-porous collapsible soils (less than 4 m) is developed. The design method includes a design chart for soil collapse field classification in terms of the most governing parameters, a method for foundation settlement estimation based on a correlation between the wetting-induced collapse strain and the applied pressure, and a design practice to guide practicing engineers to select the appropriate foundation system to construct on such soil with a great degree of confidence and safety.
文摘To make a large area of dredger fill silt surface layer form working face and subsequent construction problems, the project conducts the bamboo network reinforcement in the silt surface layer. It makes the surface layer bearing capacity to meet the construction requirement of deep processing. Based on Shantou Municipal Road Embankment Treatment Engineering and the project, the bamboo network reinforcement technology to reinforce the dredger fill super soft soil surface layer is used. The results show that the bearing capacity of hydraulic fill super soft soil surface layer is 32.6 kPa after 3 months treatment. The surface layer bearing capacity after 3 months treatment improved 323% than the early treatment and increased 695% than no processing. The results indicate that the reinforcement effect is outstanding and provide the basis for drafting the dredger fill super soft soil surface layer treatment plan.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
文摘Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.