Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing sect...Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment.展开更多
POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,...POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,physical,and information fusion.These systems are known as cyber-physicalsocial systems(CPSS)[1],[2].These CPSS face unprecedented challenges in design,analysis,management,control and integration due to their involvement with human and social factors[3],[4].To cope with this challenge,there are two main approaches to CPSS research.展开更多
This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental...This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental frequency shift in the structure, thus reducing its response and generating a frequency gap. If the frequency contents of a seismic wave fall into the gap, it can not propagate in the foundation. Thus, it will exert no influence on the structure above. A systematic study of the band of frequency gap for a 2D PF is conducted. The influence of physical and geometrical parameters such as density and elastic modulus as well as filling fraction of the PF and its materials on the band of frequency gap are investigated, and a design with a frequency gap as low as 2.49-3.72 Hz is achieved. This band of frequency gap corresponds well to the design spectra in earthquake engineering. Numerical simulations of a six-story frame structure with different foundations demonstrate that a proposed PF can greatly reduce the seismic response of an isolated structure. This investigation shows that PFs have great potential in future applications of seismic isolation technology.展开更多
A microseismic monitoring system was used in the Donggua Shan underground copper mine, and its application was introduced. The spacial distribution of the seismic event was monitored effectively during mining with thi...A microseismic monitoring system was used in the Donggua Shan underground copper mine, and its application was introduced. The spacial distribution of the seismic event was monitored effectively during mining with this system. The distribution of the seismic intensity in different time periods and in the different mining districts was obtained via the clustering analysis of the monitored results, and the different intensity concentration districts of seismicity were compartmentalized. The various characteristics and waveforms of different vibrations in the underground mine were revealed with the help of the micro-seismic monitoring system. It was proved that the construction and application of the micro-seismic monitoring system in the mine not only realized the continuous monitoring of seismicity in the deep mine, but also settled an this system.展开更多
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d...This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.展开更多
Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship....Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship. Agricultural production can be regarded as a form of carbon sequestration behavior.From the perspective of the natural-social-economic complex ecosystem, excessive water usage in food production will aggravate regional water pressure for both domestic and industrial purposes. Hence, achieving a harmonious equilibrium between carbon and water resources during the food production process is a key scientific challenge for ensuring food security and sustainability. Digital intelligence(DI) and cyber-physical-social systems(CPSS) are emerging as the new research paradigms that are causing a substantial shift in the conventional thinking and methodologies across various scientific fields, including ecological science and sustainability studies. This paper outlines our recent efforts in using advanced technologies such as big data, artificial intelligence(AI), digital twins, metaverses, and parallel intelligence to model, analyze, and manage the intricate dynamics and equilibrium among plants, carbon, and water in arid and semiarid ecosystems. It introduces the concept of the carbon-water balance and explores its management at three levels: the individual plant level, the community level, and the natural-social-economic complex ecosystem level. Additionally, we elucidate the significance of agricultural foundation models as fundamental technologies within this context. A case analysis of water usage shows that, given the limited availability of water resources in the context of the carbon-water balance, regional collaboration and optimized allocation have the potential to enhance the utilization efficiency of water resources in the river basin. A suggested approach is to consider the river basin as a unified entity and coordinate the relationship between the upstream, midstream and downstream areas. Furthermore, establishing mechanisms for water resource transfer and trade among different industries can be instrumental in maximizing the benefits derived from water resources.Finally, we envisage a future of agriculture characterized by the integration of digital, robotic and biological farming techniques.This vision aims to incorporate small tasks, big models, and deep intelligence into the regular ecological practices of intelligent agriculture.展开更多
Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy require...Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.展开更多
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of t...The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum(BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundationmooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.展开更多
The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est...The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.展开更多
The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by th...The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by the elastic foundations in the thermal environments, is investigated with an analytical method. The shells are reinforced by FGM stringers and rings. The thermal elements of the shells and stiffeners in the fundamental equations are considered. The equilibrium and nonlinear stability equations in terms of the displacement components for the stiffened shells are derived with the third-order shear deformation theory and Leckhniskii smeared stiffener technique. The closed-form expressions for determining the buckling load and postbuckling load-deflection curves are obtained with the Galerkin method. The effects of the stiffeners, the foundations, the material and dimensional parameters, and the pre-existent axial compressive and thermal load are considered.展开更多
Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange’s Equation, this study establish...Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange’s Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand.展开更多
One of the main concerns in using commercial software for finite element analyses of dam-foundation-reservoir systems is that the simplifying assumptions of the massless foundation are unreliable. In this study, an ap...One of the main concerns in using commercial software for finite element analyses of dam-foundation-reservoir systems is that the simplifying assumptions of the massless foundation are unreliable. In this study, an appropriate direct finite element method is introduced for simulating the mass, radiation damping and wave propagation effect in foundations of damfoundation-reservoir systems using commercial software ABAQUS. The free-field boundary condition is used for modeling the semi-infinite foundation and radiation damping, which is not a built-in boundary condition in most of the available commercial software for finite element analysis of structures such as ANSYS or ABAQUS and thus needs to be implemented differently. The different mechanism for modeling of the foundation, earthquake input and far-field boundary condition is described. Implementation of the free-field boundary condition in finite element software is verified by comparing it with analytical results. To investigation the feasibility of the proposed method in dam-foundation-reservoir system analysis, a series of analyses is accomplished in a variety of cases and the obtained results are compared with the substructure method by using the EAGD-84 program. Finally, the massed and massless foundation results are compared and it is concluded that the massless foundation approach leads to the overestimation of the displacements and stresses within the dam body.展开更多
Brain metastases(BMs)are the most common cause of intracranial neoplasms in adults with poor prognosis.Most BMs originate from lung cancer,breast cancer,or melanoma.Radiotherapy(RT),including whole brain radiotherapy(...Brain metastases(BMs)are the most common cause of intracranial neoplasms in adults with poor prognosis.Most BMs originate from lung cancer,breast cancer,or melanoma.Radiotherapy(RT),including whole brain radiotherapy(WBRT)and stereotactic radiation surgery(SRS),has been widely explored and is considered a mainstay anticancer treatment for BMs.Over the past decade,the advent of novel systemic therapies has revolutionized the treatment of BMs.In this context,there is a strong rationale for using a combination of treatments based on RT,with the aim of achieving both local disease control and extracranial disease control.This review focuses on describing the latest progress in RT as well as the synergistic effects of the optimal combinations of RT and systemic treatment modalities for BMs,to provide perspectives on current treatments.展开更多
The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance fun...The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance functions in a wide range of excitation frequencies, which leads to relatively complex models. That is while there is just a limited range of frequencies that really influence the response of the structure. Here, a new methodology based on the response-matching concept is proposed, which can lead to the development of simpler discrete models. The idea is then used to upgrade an existing simple model of surface foundations to the case of embedded foundations. The applicability of the model in both frequency domain and time domain analyses of soil-structure systems with embedded foundations is discussed. Moreover, the accuracy of the results is compared with another existing discrete model for embedded foundations.展开更多
An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential o...An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.展开更多
In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
Objective:To establish a scientific,objective and applicable index system for evaluating out- standing biomedical scientists for science foundation of Shanghai.Methods:According to the principal in- dices that have be...Objective:To establish a scientific,objective and applicable index system for evaluating out- standing biomedical scientists for science foundation of Shanghai.Methods:According to the principal in- dices that have been used in the developed countries for evaluating their talented personnel and the reality of our country,an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation.The following parameters were used to simplify the indices.,correlation coefficient, multiple correlation coefficient,partial correlation coefficient,creditability,and discriminatory power. And analytic hierarchy process was used to determine the weights of each index.Results and Conclusions: The established index system is scientific and applicable;it is helpful for cultivating and evaluating out- standing biomedical scientists.展开更多
Agent technique is a new method that can analyze, design and realize a distributed open system. It has been used in almost every field. But if act for the real practical words in technique, it must integrate with lega...Agent technique is a new method that can analyze, design and realize a distributed open system. It has been used in almost every field. But if act for the real practical words in technique, it must integrate with legacy software, such as database system etc, and control them. This paper introduces the specification of agent software integration, ontology, instances database as implementing agent software integration with CORBA technique and takes XML, ACL as language communicating among agents.展开更多
Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different ...Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.展开更多
Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling...Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling, simulation and real-time running of complex systems must be provided. Multi-agent systems appears as an adequate approach to current challenges in many areas. Between important qualities of MAS also belongs to, that they are open, interoperable, and heterogenous systems. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents: perceive, behave "reasonably", act in the environment, communicate with other agents. Cloud infrastructures can offer an ideal platform where run MAS systems simulations, applications and real-time running because of its large amount of processing and memory resources that can be dynamically configured for executing large agent-based software at unprecedented scale. Cloud computing can help chemical and food companies drive operational excellence; meet growing and changing customer demands; accelerate new product innovation and ramp-to-volume manufacturing in key markets; reduce IT spending; manage and mitigate supply chain risks; and enable faster and more flexible delivery of new IT system. Production type of SOC (service-oriented computing) can be inspired by a "Cloud", for the production of "Cloud" offers an attractive and natural solutions in several computing trends such as delivery system over the Internet, use of utilities, flexibility, virtualization, a "grid" distributed computing, outsourcing, Web 2.0, etc.. Production of the "Cloud" is also considered as a new multidisciplinary field that includes "network" production, virtual manufacturing, agile manufacturing, and of course cloud computing. Examples of cloud computing and MAS applications in food and chemistry development and industry, proposition of using multi-agent systems in the control of batch processes, modified ACO (ant colony optimization) approach for the diversified service allocation and scheduling mechanism in cloud paradigma, examples of applications in a business area were studied in the paper.展开更多
基金National Natural Science Foundation of China(No.61171177)National Major Scientific Equipment Development Projects of China(No.2013YQ240803)+1 种基金Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021011-1)Scientific and Technological Project in Shanxi Province(No.20140321010-02)
文摘Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment.
基金supported in part by the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金Open Research Fund of The State Key Laboratory for Management and Control of Complex Systems(20210101)New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)Tianjin University Talent Innovation Reward Program for Literature&Science Graduate Student(C1-2022-010).
文摘POWERED by the rapid development of Internet,the penetration of the Internet of Things,the emergence of big data,and the rise of social media,more and more complex systems are exhibiting the characteristics of social,physical,and information fusion.These systems are known as cyber-physicalsocial systems(CPSS)[1],[2].These CPSS face unprecedented challenges in design,analysis,management,control and integration due to their involvement with human and social factors[3],[4].To cope with this challenge,there are two main approaches to CPSS research.
基金National Natural Science Foundation of China Under Grant No.90715006
文摘This paper introduces a new seismic isolation system called a periodic foundation (PF), where inclusions are periodically arranged. The PF is different from traditional base isolation in that it causes a fundamental frequency shift in the structure, thus reducing its response and generating a frequency gap. If the frequency contents of a seismic wave fall into the gap, it can not propagate in the foundation. Thus, it will exert no influence on the structure above. A systematic study of the band of frequency gap for a 2D PF is conducted. The influence of physical and geometrical parameters such as density and elastic modulus as well as filling fraction of the PF and its materials on the band of frequency gap are investigated, and a design with a frequency gap as low as 2.49-3.72 Hz is achieved. This band of frequency gap corresponds well to the design spectra in earthquake engineering. Numerical simulations of a six-story frame structure with different foundations demonstrate that a proposed PF can greatly reduce the seismic response of an isolated structure. This investigation shows that PFs have great potential in future applications of seismic isolation technology.
基金This work was financially supported by the National Key Technologies R & D Program of China (No.2004BA615A-04).
文摘A microseismic monitoring system was used in the Donggua Shan underground copper mine, and its application was introduced. The spacial distribution of the seismic event was monitored effectively during mining with this system. The distribution of the seismic intensity in different time periods and in the different mining districts was obtained via the clustering analysis of the monitored results, and the different intensity concentration districts of seismicity were compartmentalized. The various characteristics and waveforms of different vibrations in the underground mine were revealed with the help of the micro-seismic monitoring system. It was proved that the construction and application of the micro-seismic monitoring system in the mine not only realized the continuous monitoring of seismicity in the deep mine, but also settled an this system.
基金supported by the National Natural Science Foundation of China (10772039 and 10632030)the National Basic Research Program of China (973 Program) (2010CB832704)
文摘This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.
基金supported in part by the National Key Research and Development Program of China (2021ZD0113704)the National Natural Science Foundation of China (62076239, 42041005,62103411)+1 种基金the Science and Technology Development FundMacao SAR(0050/2020/A1)。
文摘Plants sequester carbon through photosynthesis and provide primary productivity for the ecosystem. However, they also simultaneously consume water through transpiration, leading to a carbon-water balance relationship. Agricultural production can be regarded as a form of carbon sequestration behavior.From the perspective of the natural-social-economic complex ecosystem, excessive water usage in food production will aggravate regional water pressure for both domestic and industrial purposes. Hence, achieving a harmonious equilibrium between carbon and water resources during the food production process is a key scientific challenge for ensuring food security and sustainability. Digital intelligence(DI) and cyber-physical-social systems(CPSS) are emerging as the new research paradigms that are causing a substantial shift in the conventional thinking and methodologies across various scientific fields, including ecological science and sustainability studies. This paper outlines our recent efforts in using advanced technologies such as big data, artificial intelligence(AI), digital twins, metaverses, and parallel intelligence to model, analyze, and manage the intricate dynamics and equilibrium among plants, carbon, and water in arid and semiarid ecosystems. It introduces the concept of the carbon-water balance and explores its management at three levels: the individual plant level, the community level, and the natural-social-economic complex ecosystem level. Additionally, we elucidate the significance of agricultural foundation models as fundamental technologies within this context. A case analysis of water usage shows that, given the limited availability of water resources in the context of the carbon-water balance, regional collaboration and optimized allocation have the potential to enhance the utilization efficiency of water resources in the river basin. A suggested approach is to consider the river basin as a unified entity and coordinate the relationship between the upstream, midstream and downstream areas. Furthermore, establishing mechanisms for water resource transfer and trade among different industries can be instrumental in maximizing the benefits derived from water resources.Finally, we envisage a future of agriculture characterized by the integration of digital, robotic and biological farming techniques.This vision aims to incorporate small tasks, big models, and deep intelligence into the regular ecological practices of intelligent agriculture.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008092,U1934205,51908123the China Postdoctoral Science Foundation under Grant No.2021M690034+1 种基金the International Postdoctoral Exchange Fellowship Program of Chinathe Zhishan Postdoctoral Fellowship Program。
文摘Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.
基金financially supported by the National Basic Research Program of China(973 ProgramGrant Nos.2014CB046801 and 2014CB046805)
文摘The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum(BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundationmooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.
基金provided by the National Natural Science Foundation of China (No. 41071273)
文摘The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by the elastic foundations in the thermal environments, is investigated with an analytical method. The shells are reinforced by FGM stringers and rings. The thermal elements of the shells and stiffeners in the fundamental equations are considered. The equilibrium and nonlinear stability equations in terms of the displacement components for the stiffened shells are derived with the third-order shear deformation theory and Leckhniskii smeared stiffener technique. The closed-form expressions for determining the buckling load and postbuckling load-deflection curves are obtained with the Galerkin method. The effects of the stiffeners, the foundations, the material and dimensional parameters, and the pre-existent axial compressive and thermal load are considered.
基金National Natural Science Foundation of China under Grant Nos.51678346 and 51038007the State Key Laboratory of Hydroscience and Engineering Project under Grant Nos.2014-KY-03 and 2015-KY-03
文摘Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange’s Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand.
文摘One of the main concerns in using commercial software for finite element analyses of dam-foundation-reservoir systems is that the simplifying assumptions of the massless foundation are unreliable. In this study, an appropriate direct finite element method is introduced for simulating the mass, radiation damping and wave propagation effect in foundations of damfoundation-reservoir systems using commercial software ABAQUS. The free-field boundary condition is used for modeling the semi-infinite foundation and radiation damping, which is not a built-in boundary condition in most of the available commercial software for finite element analysis of structures such as ANSYS or ABAQUS and thus needs to be implemented differently. The different mechanism for modeling of the foundation, earthquake input and far-field boundary condition is described. Implementation of the free-field boundary condition in finite element software is verified by comparing it with analytical results. To investigation the feasibility of the proposed method in dam-foundation-reservoir system analysis, a series of analyses is accomplished in a variety of cases and the obtained results are compared with the substructure method by using the EAGD-84 program. Finally, the massed and massless foundation results are compared and it is concluded that the massless foundation approach leads to the overestimation of the displacements and stresses within the dam body.
基金supported by grants from Beijing Municipal Natural Science Foundation(Grant No.7202150)Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(Grant No.2016-I2M-2-001)。
文摘Brain metastases(BMs)are the most common cause of intracranial neoplasms in adults with poor prognosis.Most BMs originate from lung cancer,breast cancer,or melanoma.Radiotherapy(RT),including whole brain radiotherapy(WBRT)and stereotactic radiation surgery(SRS),has been widely explored and is considered a mainstay anticancer treatment for BMs.Over the past decade,the advent of novel systemic therapies has revolutionized the treatment of BMs.In this context,there is a strong rationale for using a combination of treatments based on RT,with the aim of achieving both local disease control and extracranial disease control.This review focuses on describing the latest progress in RT as well as the synergistic effects of the optimal combinations of RT and systemic treatment modalities for BMs,to provide perspectives on current treatments.
文摘The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance functions in a wide range of excitation frequencies, which leads to relatively complex models. That is while there is just a limited range of frequencies that really influence the response of the structure. Here, a new methodology based on the response-matching concept is proposed, which can lead to the development of simpler discrete models. The idea is then used to upgrade an existing simple model of surface foundations to the case of embedded foundations. The applicability of the model in both frequency domain and time domain analyses of soil-structure systems with embedded foundations is discussed. Moreover, the accuracy of the results is compared with another existing discrete model for embedded foundations.
基金This project is financially supported by the National Natural Science Foundation of China
文摘An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
文摘Objective:To establish a scientific,objective and applicable index system for evaluating out- standing biomedical scientists for science foundation of Shanghai.Methods:According to the principal in- dices that have been used in the developed countries for evaluating their talented personnel and the reality of our country,an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation.The following parameters were used to simplify the indices.,correlation coefficient, multiple correlation coefficient,partial correlation coefficient,creditability,and discriminatory power. And analytic hierarchy process was used to determine the weights of each index.Results and Conclusions: The established index system is scientific and applicable;it is helpful for cultivating and evaluating out- standing biomedical scientists.
基金Fund of the Vital Lab's Accessing Scholar in High School(K93-9-2001-2)
文摘Agent technique is a new method that can analyze, design and realize a distributed open system. It has been used in almost every field. But if act for the real practical words in technique, it must integrate with legacy software, such as database system etc, and control them. This paper introduces the specification of agent software integration, ontology, instances database as implementing agent software integration with CORBA technique and takes XML, ACL as language communicating among agents.
文摘Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes.
文摘Cloud computing can offer a very powerful, reliable, predictable and scalable computing infrastructure for the execution of MAS (multi-agent systems) implementing complex agent-based applications such when modelling, simulation and real-time running of complex systems must be provided. Multi-agent systems appears as an adequate approach to current challenges in many areas. Between important qualities of MAS also belongs to, that they are open, interoperable, and heterogenous systems. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents: perceive, behave "reasonably", act in the environment, communicate with other agents. Cloud infrastructures can offer an ideal platform where run MAS systems simulations, applications and real-time running because of its large amount of processing and memory resources that can be dynamically configured for executing large agent-based software at unprecedented scale. Cloud computing can help chemical and food companies drive operational excellence; meet growing and changing customer demands; accelerate new product innovation and ramp-to-volume manufacturing in key markets; reduce IT spending; manage and mitigate supply chain risks; and enable faster and more flexible delivery of new IT system. Production type of SOC (service-oriented computing) can be inspired by a "Cloud", for the production of "Cloud" offers an attractive and natural solutions in several computing trends such as delivery system over the Internet, use of utilities, flexibility, virtualization, a "grid" distributed computing, outsourcing, Web 2.0, etc.. Production of the "Cloud" is also considered as a new multidisciplinary field that includes "network" production, virtual manufacturing, agile manufacturing, and of course cloud computing. Examples of cloud computing and MAS applications in food and chemistry development and industry, proposition of using multi-agent systems in the control of batch processes, modified ACO (ant colony optimization) approach for the diversified service allocation and scheduling mechanism in cloud paradigma, examples of applications in a business area were studied in the paper.