期刊文献+
共找到510,638篇文章
< 1 2 250 >
每页显示 20 50 100
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:2
1
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts design principles Mechanistic understandings
下载PDF
Machine learning for membrane design and discovery 被引量:1
2
作者 Haoyu Yin Muzi Xu +4 位作者 Zhiyao Luo Xiaotian Bi Jiali Li Sui Zhang Xiaonan Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期54-70,共17页
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an... Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end. 展开更多
关键词 Machine learning Membranes AI for Membrane DATA-DRIVEN design
下载PDF
Deep Insight of Design,Mechanism,and Cancer Theranostic Strategy of Nanozymes 被引量:1
3
作者 Lu Yang Shuming Dong +6 位作者 Shili Gai Dan Yang He Ding Lili Feng Guixin Yang Ziaur Rehman Piaoping Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期165-217,共53页
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction... Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities. 展开更多
关键词 Nanozymes Classification Prediction and design Catalytic mechanism Tumor theranostics
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
4
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
下载PDF
Design,test,and verification of in-situ condition preserved coring and analysis system in lunar-based simulation environment 被引量:1
5
作者 Haichun Hao Mingzhong Gao +10 位作者 Yan Wu Zheng Gao Yongcheng Li Xuemin Zhou Peng Chu Xuan Wang Jiahua Li Lang Zhou Jie Song Tianxiang Ao Yikun Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1259-1272,共14页
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci... The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments. 展开更多
关键词 Lunar-based Large temperature difference Vacuum Drilling and coring System design
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
6
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil ANTIOXIDANT molecular mechanism molecular design antioxidant performance
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
7
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Multimode Design and Analysis of an Integrated Leg-Arm Quadruped Robot with Deployable Characteristics
8
作者 Fuqun Zhao Yifan Wu +4 位作者 Xinhua Yang Xilun Ding Kun Xu Sheng Guo Xiaodong Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期41-61,共21页
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of... To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics. 展开更多
关键词 Quadruped robot Multimode design Mode switching Locomotion Operation
下载PDF
Review on the design of high-strength and hydrogen-embrittlement-resistant steels
9
作者 Zhiyu Du Rongjian Shi +2 位作者 Xingyu Peng Kewei Gao Xiaolu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1572-1589,共18页
Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilizat... Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance. 展开更多
关键词 hydrogen embrittlement surface design hydrogen traps nanosized precipitates
下载PDF
System design and validation of Queqiao-2 lunar relay communication satellite
10
作者 ZHANG Lihua XIONG Liang +11 位作者 SUN Ji CHEN Luojing XIAO Chuan ZHOU Wenyan WANG Yong LIU Wangwang GUAN Yifeng CHEN Tao YU Xiaochuan XU Jin CHEN Guohui CAO Xiaoping 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期23-39,共17页
In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of sci... In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated. 展开更多
关键词 lunar explorations relay communication Queqiao system design TEST VALIDATION
下载PDF
Glucocorticoids-based prodrug design:Current strategies and research progress
11
作者 Hongbing Liu Muse Ji +5 位作者 Peifu Xiao Jingxin Gou Tian Yin Haibing He Xing Tang Yu Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期41-78,共38页
Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such a... Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs. 展开更多
关键词 GLUCOCORTICOIDS Prodrug design Targeted drug delivery Research progress
下载PDF
Magnesium-based biomaterials for coordinated tissue repair:A comprehensive overview of design strategies,advantages,and challenges
12
作者 Yuan Chen Siming Zhang +8 位作者 Jiaxiang Bai Yao Yang Yingjie Wang Yanling Zhou Wei Jiang Junjie Wang Junchen Zhu Chen Zhu Xianzuo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3025-3061,共37页
Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,adva... Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects. 展开更多
关键词 Magnesium-based biomaterials design strategies Functional properties Clinical applications CHALLENGES
下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
13
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 Random forest reliability-based design optimization ensemble learning machine learning
下载PDF
Vibration Control of the Rail Grinding Vehicle with Abrasive Belt Based on Structural Optimization and Lightweight Design
14
作者 Wengang Fan Shuai Zhang +2 位作者 Zhiwei Wu Yi Liu Jiangnan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期311-337,共27页
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan... As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment. 展开更多
关键词 Vibration control Dynamic characteristics Structural optimization Lightweight design Modal analysis
下载PDF
Optimal design for rubber concrete layered periodic foundations based on the analytical approximations of band gaps and mapping relations
15
作者 Wu Qiaoyun Xu Zhifeng +2 位作者 Xu Peishan Zeng Wenxuan Chen Xuyong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期593-608,共16页
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation... The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations. 展开更多
关键词 periodic foundation band gap vibration attenuation seismic isolation optimal design
下载PDF
Design and optimization of fluid lubricated bearings operated with extreme working performances——a comprehensive review
16
作者 Guohua Zhang Ming Huang +6 位作者 Gangli Chen Jiasheng Li Yang Liu Jianguo He Yueqing Zheng Siwei Tang Hailong Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期325-376,共52页
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge... Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances. 展开更多
关键词 fluid lubricated bearings structural design performance optimization extreme working performances
下载PDF
Design and Verification for Dual⁃mode CDFS and High⁃Load Compressor with a Large Flow Regulation Range
17
作者 HUANG Lei ZHANG Jun +2 位作者 HAO Yuyang REN Hongkai CHU Wuli 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期632-644,共13页
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ... This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine. 展开更多
关键词 fusion design DUAL-MODE high-load compressor large flow regulation range
下载PDF
Design method of extractant for liquid-liquid extraction based on elements and chemical bonds
18
作者 Yuwen Wei Chunling Zhang +4 位作者 Yue Zhang Lili Wang Li Xia Xiaoyan Sun Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期193-202,共10页
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e... In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value. 展开更多
关键词 Molecular design Element and chemical bonds Molecular simulation THERMODYNAMICS Solvent extraction
下载PDF
Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations
19
作者 Jiaqiong Wang Tao Yang +2 位作者 Chen Hu Yu Zhang Ling Zhou 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1203-1218,共16页
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second... To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model. 展开更多
关键词 HIGH-SPEED partial flow pump orthogonal test optimal design numerical calculation
下载PDF
The Impact of Sea Level Rise on Roadway Design and Evacuation Routes in Delaware
20
作者 Jack Palevich Ardeshir Faghri Ahmet Karakurt 《American Journal of Climate Change》 2024年第1期69-82,共14页
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans... As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas. 展开更多
关键词 Sea Level Rise Roadway design Evacuation Routes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部