This paper investigates the electrical and mechanical behaviors of a single-ASDBD actuator and a two-ASDBD one supplied in sinusoidal mode(1-10 kHz).The main objective of our research is to determine the optimum fre...This paper investigates the electrical and mechanical behaviors of a single-ASDBD actuator and a two-ASDBD one supplied in sinusoidal mode(1-10 kHz).The main objective of our research is to determine the optimum frequency values for the function of these actuators with a given power supply.For this purpose,we determine the electrical power density input to the actuators versus frequency through two methods:i) a semi-theoretical method,based on an impedance calculation,and ii) an experimental method,based on direct electrical measurements.These methods show that the addition of a second ASDBD changes the resonance frequency value of the actuator by moving it towards low frequencies.After characterizing the aerodynamic mobile layer structure induced by the single-ASDBD actuator,we analyze experimentally the mechanical response of a two-ASDBD actuator as a function of the inter-ASDBD distance.The experiments demonstrate that the induced electric wind velocity and the electro-mechanical yield of a twoASDBD actuator reach a maximum value for an optimum inter-ASDBD distance,which is a useful value for the design of highly efficient multi-ASDBD actuators.展开更多
A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain data-set and target domain dataset simultaneousl...A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain data-set and target domain dataset simultaneously.However,data privacy makes it not always possible to access source domain dataset and target domain dataset in actual industrial equipment simulta-neously,especially for aviation component like Electro-Mechanical Actuator(EMA)whose dataset are often not shareable due to the data copyright and confidentiality.To address this problem,this paper proposes a source free unsupervised domain adaptation framework for EMA fault diagnosis.The proposed framework is a combination of feature network and classifier.Firstly,source domain datasets are only applied to train a source model.Secondly,the well-trained source model is trans-ferred to target domain and classifier is frozen based on source domain hypothesis.Thirdly,nearest centroid filtering is introduced to filter the reliable pseudo labels for unlabeled target domain data-set,and finally,supervised learning and pseudo label clustering are applied to fine-tune the trans-ferred model.In comparison with several traditional unsupervised domain adaptation methods,case studies based on low-and high-frequency monitoring signals on EMA indicate the effectiveness of the proposed method.展开更多
In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a...In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.展开更多
With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls....With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls.Conventional hydraulically powered trimmable horizontal stabilizer actuation(THSA)system is nowadays developed to be electrically supplied.Given their safety-criticality,no-back mechanism and redundant load paths are utilized to meet the flight control requirements.However,rare literatures have introduced these functions and addressed the virtual prototyping activities from system-level point of view.This paper proposed such a model of a THSA system with dual electric power sources and fault-tolerant mechanical load paths.The nonlinear effects of components are considered with realism,and system-level simulation test is conducted to support the model-based system engineering(MBSE)approach.The models are developed with a power view instead of a pure signal view.Focusing on the friction effect and compliance effect with backlash or preload,some improved and novel approaches are adopted for these crucial components and validated via experimental results.Meanwhile,the implemented systemlevel model enables injection of crucial faults.Finally,the simulation of the proposed model shows that it is an efficient resource to investigate the actuator’s dynamic performance,to virtually prove that the actuator meets the fail/safe constraint,and to demonstrate the soundness of the fault monitoring functions.展开更多
文摘This paper investigates the electrical and mechanical behaviors of a single-ASDBD actuator and a two-ASDBD one supplied in sinusoidal mode(1-10 kHz).The main objective of our research is to determine the optimum frequency values for the function of these actuators with a given power supply.For this purpose,we determine the electrical power density input to the actuators versus frequency through two methods:i) a semi-theoretical method,based on an impedance calculation,and ii) an experimental method,based on direct electrical measurements.These methods show that the addition of a second ASDBD changes the resonance frequency value of the actuator by moving it towards low frequencies.After characterizing the aerodynamic mobile layer structure induced by the single-ASDBD actuator,we analyze experimentally the mechanical response of a two-ASDBD actuator as a function of the inter-ASDBD distance.The experiments demonstrate that the induced electric wind velocity and the electro-mechanical yield of a twoASDBD actuator reach a maximum value for an optimum inter-ASDBD distance,which is a useful value for the design of highly efficient multi-ASDBD actuators.
基金supported by the National Natural Science Foundation of China(No.52075349)the Aeronautical Science Foundation of China(No.201905019001)the China Scholarship Council(No.202106240078).
文摘A common necessity for prior unsupervised domain adaptation methods that can improve the domain adaptation in unlabeled target domain dataset is access to source domain data-set and target domain dataset simultaneously.However,data privacy makes it not always possible to access source domain dataset and target domain dataset in actual industrial equipment simulta-neously,especially for aviation component like Electro-Mechanical Actuator(EMA)whose dataset are often not shareable due to the data copyright and confidentiality.To address this problem,this paper proposes a source free unsupervised domain adaptation framework for EMA fault diagnosis.The proposed framework is a combination of feature network and classifier.Firstly,source domain datasets are only applied to train a source model.Secondly,the well-trained source model is trans-ferred to target domain and classifier is frozen based on source domain hypothesis.Thirdly,nearest centroid filtering is introduced to filter the reliable pseudo labels for unlabeled target domain data-set,and finally,supervised learning and pseudo label clustering are applied to fine-tune the trans-ferred model.In comparison with several traditional unsupervised domain adaptation methods,case studies based on low-and high-frequency monitoring signals on EMA indicate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.52077100)the Aviation Science Foundation(No.201958052001)
文摘In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.
基金supported by the National Natural Science Foundation of China(No.52275062)the Fundamental Research Funds for the Central Universities of Beihang University(YWF-22-L-912).
文摘With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls.Conventional hydraulically powered trimmable horizontal stabilizer actuation(THSA)system is nowadays developed to be electrically supplied.Given their safety-criticality,no-back mechanism and redundant load paths are utilized to meet the flight control requirements.However,rare literatures have introduced these functions and addressed the virtual prototyping activities from system-level point of view.This paper proposed such a model of a THSA system with dual electric power sources and fault-tolerant mechanical load paths.The nonlinear effects of components are considered with realism,and system-level simulation test is conducted to support the model-based system engineering(MBSE)approach.The models are developed with a power view instead of a pure signal view.Focusing on the friction effect and compliance effect with backlash or preload,some improved and novel approaches are adopted for these crucial components and validated via experimental results.Meanwhile,the implemented systemlevel model enables injection of crucial faults.Finally,the simulation of the proposed model shows that it is an efficient resource to investigate the actuator’s dynamic performance,to virtually prove that the actuator meets the fail/safe constraint,and to demonstrate the soundness of the fault monitoring functions.