In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in ...In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.展开更多
Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A...Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.展开更多
IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or down...IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.展开更多
This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuat...This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuators to recover the vehicle’s steering ability.A dynamic vehicle model is derived with the function of four-wheel driving.A sliding mode controller with a combined sliding surface is employed as a motion controller,allowing the desired vehicle motion to be tracked by the adaptive drivermodel.An extended Kalman filter-based state estimator is adopted to virtually measure the sideslip anglewhile considering the nonlinear tire force.A new allocation strategy,involving two distribution modes of coordination,is designed.In addition,a weight coefficient adjustment strategy is implemented in optimal mode based on the lateral load transfer,thus improving the steering performance.Simulations are conducted to verify the proposed FTC algorithm.The results demonstrate that steering failure can be effectively covered by the functional redundancy of the driving/braking actuators.展开更多
Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the pa...Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.展开更多
文摘In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.
基金Supported by the National High Technology Research and Development Programme of China (No. (2008AA11 A146 ), China Postdoctoral Science Foundation (20090450298).
文摘Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.
文摘IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.
基金The work was supported by the National Science Foundation of China(51675066)Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjAX0323)Shanghai Aerospace Science and Technology Innovation Foundation(SAST201016).
文摘This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuators to recover the vehicle’s steering ability.A dynamic vehicle model is derived with the function of four-wheel driving.A sliding mode controller with a combined sliding surface is employed as a motion controller,allowing the desired vehicle motion to be tracked by the adaptive drivermodel.An extended Kalman filter-based state estimator is adopted to virtually measure the sideslip anglewhile considering the nonlinear tire force.A new allocation strategy,involving two distribution modes of coordination,is designed.In addition,a weight coefficient adjustment strategy is implemented in optimal mode based on the lateral load transfer,thus improving the steering performance.Simulations are conducted to verify the proposed FTC algorithm.The results demonstrate that steering failure can be effectively covered by the functional redundancy of the driving/braking actuators.
基金supported by the National Natural Science Foundation of China(Grant No.51205153)the Natural Science Foundation of Jilin Province(Grant No.20140101072JC)the 2018"13th Five-Year"Scientific Research Planning Project of the Education Department of Jilin Province as well as the 2018 Science and Technology Development Plan of Jilin Province-International Science and Technology Cooperation Project(Grant No.20180414011GH)
文摘Although electric vehicle fully exhibits its comparative merits of energy conservation and environmental friendliness, further improvement of its traction energy efficiency lacks comprehensive investigations in the past. In this paper, the effect of the torque vectoring on traction energy conservation during cornering for a rear-wheel-independent-drive electric vehicle is investigated.Firstly, turning resistance coefficient and energy conservation mechanism of torque vectoring are derived from the single track dynamic model. Next, an optimal torque vectoring control strategy based on genetic algorithm is proposed, with the consideration of the influence of the operation-point change of the in-wheel motors, to find out the best torque vectoring ratio offline. Finally,various simulation tests are conducted to validate the energy conservation effect after Simulink modelling. The results verify that though the optimization of the operating region of the motors is the main part for tractive energy conservation, the contribution of torque vectoring itself can reach up to 1.7% in some typical cases.