Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in Ch...Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in China.The results show:i)There is an apparent difference in perception levels for long-term temperature and precipitation changes.Specifically,57.4%of farmers perceived the long-term temperature change correctly,but only 29.7%of farmers perceived the long-term precipitation change correctly;ii)The factors influencing the farmers’perceptions are almost completely different between precipitation and temperature,the former are mostly agriculture related,while latter are mostly non-agriculture related,except for farm size;and iii)Farmers are not expected to pay more attention to long-term precipitation changes over the crop growing seasons,because less than 30%of farmers can correctly perceive long-term precipitation change.Therefore,to improve the accuracy of farmers’perceptions of climate change,the government is recommended to:i)enhance education and training programs;ii)speed up land transfer and expand household land farm size;iii)develop farmer cooperative organizations;iv)invest more in agricultural infrastructure,specifically in major grain producing regions;and v)improve the agricultural environment and increase farming income.展开更多
A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco...A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.展开更多
On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Do...On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Doppler weather radar, conventional surface observations, high-altitude radiosonde and wind profiler radar were used to analyze characteristics and contributions of synoptic scale and mesoscale systems during this torrential rainstorm. The results showed that:(1) the storm was caused by a quasi-linear mesoscale convective system(MCS) and the slow-movement of this system was the primary trigger of the torrential downpour;(2) water vapor was abundant, nearly saturated and in steady state throughout the atmosphere before the storm; intrusion of the weak dry and cold air in the middle level and a striking "dry above and wet below " structure had increased the atmospheric instability;(3) low-level southwesterly airflow from a low pressure(trough) at the Beibu Gulf provided abundant water vapor at the onset of the rainstorm; a deep dry layer was formed by dry and cold air behind the high-level trough, which facilitated latent heat release;upper-level divergence and low-level convergence circulations also provided vertical uplift for warm and moist air at the lower level;(4) Topography only played a minor role as the MCS developed and strengthened over relatively flat coastal terrain. Low level density flow induced by convection triggered new convective cell generation at the leading edge of the convective system, thereby playing a key role in the change of temperature gradient at lower layers, and resulting in strengthening atmospheric instability.展开更多
By using the statistical data of grain yield in China's major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China's major...By using the statistical data of grain yield in China's major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China's major grain producing areas are analyzed.The results of research show that the grain yield in China's major grain producing areas grows in unstable fluctuation,with high-frequency fluctuation cycle and regular length;the amplitude of fluctuation,on the whole,is moderate,with not strong stability;the fluctuation of grain yield has correspondence,reflecting the N-shape developmental trend of grain production at present;the fluctuation of grain yield has gradient characteristics;in the process of comparison of grain yield,the average growth rate annually of grain yield in China's major grain producing areas is higher than that of the national average,but the relative fluctuation coefficient is also higher than that of the national average.From five aspects,namely natural disaster,agricultural policy,production input,grain price and grain circulation,the cause of fluctuation of grain yield in China's major grain producing areas is analyzed,and measures of preventing and arresting super-long fluctuation of grain yield are put forward.Firstly,stick to strict farmland protection system,and strive to promote farmland quality;secondly,strengthen infrastructure construction of grain production and beef up the ability of preventing natural disaster;thirdly,quicken the pace of agricultural technology and establish robust technology supporting system;fourthly,lay stress on innovation of agricultural organization system and provide implementation path and vehicle for application of agricultural technology measures;fifthly,perfect disaster precaution system and grain market system,and strengthen the ability of preventing risk of grain production.展开更多
There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building ...There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.展开更多
As one of the important policies of promoting the formation of main functional areas, the industrial policy directly determines the sustainable growth of space control ability of main functional areas. A restricted de...As one of the important policies of promoting the formation of main functional areas, the industrial policy directly determines the sustainable growth of space control ability of main functional areas. A restricted development zone is a type of main functional area which provides agricultural products and ecological products, assures the supply of national agricultural products and the stability of ecosystems, as well as safeguards the ecological functions and agricultural functions of wider regions by restricting its own development. Therefore scientific, complete and operable industrial policy support is needed. Restricted development zones are distributed widely in western China. With the restriction of their main functions, differential industrial policies should be implemented in the development of the restricted development zones: Dealing well with the relationship between industrial development and ecological protection, developing special industries which are friendly to resources and environment and appropriate for local conditions, guiding and encouraging industries to learn from regions with favorable development conditions, orderly withdrawing industries and enterprises adverse to main functions, facilitating industrial structure upgrading, optimizing industrial organization, improving industrial technological level and rationalizing industrial layout.展开更多
The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in th...The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in the Shenhu area, northern South China Sea, where China's first marine hydrate exploitation operation is due to be located. The validation of the undrained shear strength prediction model based on CPTU parameters. Different laboratory tests, including pocket penetrometer, torvane, miniature vane and unconsolidated undrained triaxial tests, are employed to solve empirical cone coefficients by statistical and mathematical methods. Finally, an optimized model is proposed to describe the longitudinal distribution of undrained shear strength in calcareous clay strata in the Shenhu area. Research results reveal that average empirical cone coefficients based on total cone resistance, effective resistance, and excess-pore pressure are 13.8, 4.2 and 14.4, respectively. The undrained shear strength prediction model shows a good fit with the laboratory results only within specific intervals based on their compaction degree and gas-bearing conditions. The optimized prediction model in piecewise function format can be used to describe the longitudinal distribution of the undrained shear strength for calcareous clay within all depth intervals from the mud-line to the upper boundary of hydrate-bearing sediments(HBS). The optimized prediction result indicates that the effective cone resistance model is suitable for very soft to firm calcareous clays,the excess-pore pressure model can depict the undrained shear strength for firm to very stiff but gas-free clays,while the total cone resistance model is advantageous for evaluating the undrained shear strength for very stiff and gassy clays. The optimized model in piecewise function format can considerably improve the adaptability of empirical models for calcareous clay in the Shenhu area. These results are significant for safety evaluations of proposed hydrate exploitation projects.展开更多
The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T cond...The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.展开更多
Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands are...Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.展开更多
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi...BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.展开更多
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover...Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.展开更多
Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in ...Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in the shadow zone of deep water. We propose a multiple-step fill inversion method to invert sound speed, density and attenuation in deep water. Based on a uniform liquid hMf-space bottom model, sound speed of the bottom is inverted by using the long range TL at low frequency obtained in an acoustic propagation experiment conducted in the South China Sea (SCS) in summer 2014. Meanwhile, bottom density is estimated combining with the Hamilton sediment empirical relationship. Attenuation coefficients at different frequencies are then estimated from the TL data in the shadow zones by using the known sound speed and density as a constraint condition. The nonlinear relationship between attenuation coefficient and frequency is given in the end. Tile inverted bottom parameters can be used to forecast the transmission loss in the deep water area of SCS very we//.展开更多
The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sedime...The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.展开更多
SEM analysis of trunk ornamentation on a compressed palaeoscolecid fossil from the Shipai fauna, Cambrian Series 2 and Stage 4 at Three Gorges, South China, allows a reassignment of the material to a new taxon, Sanxia...SEM analysis of trunk ornamentation on a compressed palaeoscolecid fossil from the Shipai fauna, Cambrian Series 2 and Stage 4 at Three Gorges, South China, allows a reassignment of the material to a new taxon, Sanxiascolex papillogyrus gen. et sp. nov. The preserved body is entirely annulated. Each annulus is ornamented by four rows of irregularly alternating plates and each plate bears numerous tubercles at the marginal region and a variable number (zero to six) of nodes at its central part. These features are unique among known palaeoscolecids. Comparative analyses with other compressed palaeoscolecid macrofossils and phosphatized material on the pattern of trunk ornamentation indicates that a detailed examination of the cuticle ornament weighs heavily in analyses of their taxonomic distinctions. A similar sclerite pattern to that of S. papillogyrus has been found in some phosphatized palaeoscolecid cuticle fragments as well as in isolated sclerites. The upper series of nodes and tubercles of these sclerites suggest an accretional mode of sclerite growth. The considerable variation in node number observed across the plates of S. papillogyrus demonstrates that phosphatic palaeoscolecid taxonomy based on relatively minor variations in the number of selerite nodes should perhaps be reconsidered. As the origins of the phosphatized specimens are quite diverse, a large variety of isolated sclerites from the Early Palaeozoic may not reflect actual biodiversity.展开更多
Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloo...Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.展开更多
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located...The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ^(87)Rb/^(86)Sr and ^(87)Sr/^(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ^(87)Sr/^(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.展开更多
1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit re...1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit recently discovered.Few studies have been made of its petrology,mineralogy,geochemistry,chronology and metallogeny.In recent years,several exploratory drillings have been done in this deposit.These drilling holes,from 380 to 600展开更多
The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu...The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation.展开更多
Flavotoxin A was isolated from Pseudomonas cocovenenans subsp. farinofermentans culture in semisolid potato-dextrose-agar medium, which was isolated from fermented corn meal that had caused food poisoning outbreaks in...Flavotoxin A was isolated from Pseudomonas cocovenenans subsp. farinofermentans culture in semisolid potato-dextrose-agar medium, which was isolated from fermented corn meal that had caused food poisoning outbreaks in China. The isolation, purification, and chemical structure of this toxin were studied. The NMR spectra, the uv spectra, and molar extinction coefficients, and the mass spectra of Flavotoxin A are in good agreement with those reported for bongkrekic acid. Therefore, Flavotoxin A and bongkrekic acid are the same organic chemical compound; the molecular formula is C_(28)H_(38)O_7. The oral LD_(50) of the purified Flavotoxin A in mice was 3.16mg/kg (1.53-6.15mg/kg). The existence of bongkrekic acid in toxic fermented corn samples collected during food poisoning outbreaks was also confirmed. It is concluded that bongkrekic acid has played an important role in the outbreaks of fermented corn poisoning. 1989 Academic Press, Inc.展开更多
Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China G...Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey(CGS).During this test,there were many unique characteristics different from the sand reservoir,which was believed to be related to the clayed silt physical properties.In this paper,simulation experiments,facilities analysis,and theoretical calculation were used to confirm the hydrate structure,reservoir thermo-physical property,and bond water movement rule.And the behavior of how they affected production efficiency was analyzed.The results showed that:It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan;the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply;clayed silt got better thermal conductivity compared to coarse grain,but poor thermal convection especially with hydrate;clayed silt sediment was easy to bond water,but the irreducible water can be exchanged to free water under high production pressure,and the most obvious pressure range of water increment was 1.9–4.9 MPa.展开更多
基金supported by the National Social Science Fund of China (14BGL093)the International Development Research Center (107093-001)+4 种基金the Specialized Research Fund for the Jointed Doctoral Program of Higher Education of China (20124105110006)the National Natural Science Foundation of China (71403082)the 2017 Annual Scientific and Technological Innovation of Henan Province Talent (Humanities and Social Sciences) Support Program, China (2017-cxrc-002)the Young Backbone Teachers Scheme of Henan Colleges and Universities, China (2015GGJS-085)the Henan Province Philosophy and Social Science Planning Project, China (2017BJJ033)
文摘Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in China.The results show:i)There is an apparent difference in perception levels for long-term temperature and precipitation changes.Specifically,57.4%of farmers perceived the long-term temperature change correctly,but only 29.7%of farmers perceived the long-term precipitation change correctly;ii)The factors influencing the farmers’perceptions are almost completely different between precipitation and temperature,the former are mostly agriculture related,while latter are mostly non-agriculture related,except for farm size;and iii)Farmers are not expected to pay more attention to long-term precipitation changes over the crop growing seasons,because less than 30%of farmers can correctly perceive long-term precipitation change.Therefore,to improve the accuracy of farmers’perceptions of climate change,the government is recommended to:i)enhance education and training programs;ii)speed up land transfer and expand household land farm size;iii)develop farmer cooperative organizations;iv)invest more in agricultural infrastructure,specifically in major grain producing regions;and v)improve the agricultural environment and increase farming income.
基金funded by the National Natural Science Foundation of China (41130748, 41101162)the Key Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-EW-304)
文摘A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty.
基金Guangdong Province Science and Technology Project(2017B020244002)National key basic research and development plan(973 plan)project"Typhoon fine structure multi-source data analysis theory and method research"(2015CB452802)+2 种基金National Program on Key Basic Research Project(2015CB452801)National Natural Science Foundation project"Observation and Assimilation Technology of Batch Variational Data and Its Application"(41475102)National Natural Science Foundation of China(41275025)
文摘On May 20 th 2007, a brief but severe downpour rainstorm occurred in the coastal areas of Maoming and Yangjiang with rainfall of 115 mm per hour. Data from NCEP/NCAR reanalysis with 1°×1° resolution, Doppler weather radar, conventional surface observations, high-altitude radiosonde and wind profiler radar were used to analyze characteristics and contributions of synoptic scale and mesoscale systems during this torrential rainstorm. The results showed that:(1) the storm was caused by a quasi-linear mesoscale convective system(MCS) and the slow-movement of this system was the primary trigger of the torrential downpour;(2) water vapor was abundant, nearly saturated and in steady state throughout the atmosphere before the storm; intrusion of the weak dry and cold air in the middle level and a striking "dry above and wet below " structure had increased the atmospheric instability;(3) low-level southwesterly airflow from a low pressure(trough) at the Beibu Gulf provided abundant water vapor at the onset of the rainstorm; a deep dry layer was formed by dry and cold air behind the high-level trough, which facilitated latent heat release;upper-level divergence and low-level convergence circulations also provided vertical uplift for warm and moist air at the lower level;(4) Topography only played a minor role as the MCS developed and strengthened over relatively flat coastal terrain. Low level density flow induced by convection triggered new convective cell generation at the leading edge of the convective system, thereby playing a key role in the change of temperature gradient at lower layers, and resulting in strengthening atmospheric instability.
基金Supported by Youth Initiation Fund Program of Jilin Agricultural University
文摘By using the statistical data of grain yield in China's major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China's major grain producing areas are analyzed.The results of research show that the grain yield in China's major grain producing areas grows in unstable fluctuation,with high-frequency fluctuation cycle and regular length;the amplitude of fluctuation,on the whole,is moderate,with not strong stability;the fluctuation of grain yield has correspondence,reflecting the N-shape developmental trend of grain production at present;the fluctuation of grain yield has gradient characteristics;in the process of comparison of grain yield,the average growth rate annually of grain yield in China's major grain producing areas is higher than that of the national average,but the relative fluctuation coefficient is also higher than that of the national average.From five aspects,namely natural disaster,agricultural policy,production input,grain price and grain circulation,the cause of fluctuation of grain yield in China's major grain producing areas is analyzed,and measures of preventing and arresting super-long fluctuation of grain yield are put forward.Firstly,stick to strict farmland protection system,and strive to promote farmland quality;secondly,strengthen infrastructure construction of grain production and beef up the ability of preventing natural disaster;thirdly,quicken the pace of agricultural technology and establish robust technology supporting system;fourthly,lay stress on innovation of agricultural organization system and provide implementation path and vehicle for application of agricultural technology measures;fifthly,perfect disaster precaution system and grain market system,and strengthen the ability of preventing risk of grain production.
基金The National Twelfth Five Major Projects Subject--the deepwater area of northern South China Sea,rich hydrocarbon generation potential sag evaluation under contract No.2011ZX05025-002
文摘There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.
基金the paper is the phased achievement of Projects of the National Social Science Foundation of China——“Study on the Supporting Policies in Limited Development Zones”(11BJL058) directed by the author
文摘As one of the important policies of promoting the formation of main functional areas, the industrial policy directly determines the sustainable growth of space control ability of main functional areas. A restricted development zone is a type of main functional area which provides agricultural products and ecological products, assures the supply of national agricultural products and the stability of ecosystems, as well as safeguards the ecological functions and agricultural functions of wider regions by restricting its own development. Therefore scientific, complete and operable industrial policy support is needed. Restricted development zones are distributed widely in western China. With the restriction of their main functions, differential industrial policies should be implemented in the development of the restricted development zones: Dealing well with the relationship between industrial development and ecological protection, developing special industries which are friendly to resources and environment and appropriate for local conditions, guiding and encouraging industries to learn from regions with favorable development conditions, orderly withdrawing industries and enterprises adverse to main functions, facilitating industrial structure upgrading, optimizing industrial organization, improving industrial technological level and rationalizing industrial layout.
基金The National Natural Science Foundation of China under contract No.41606078the Taishan Scholar Special Experts Project under contract No.ts201712079+1 种基金the National Key Research and Development Plan under contract No.2017YFC0307600the Open Fund of Qingdao National Laboratory for Marine Science and Technology of China under contract Nos QNLM2016ORP0203 and QNLM2016ORP0207
文摘The undrained shear strength of shallow strata is a critical parameter for safety design in deep-water operations.In situ piezocone penetration tests(CPTU) and laboratory experiments are performed at Site W18-19 in the Shenhu area, northern South China Sea, where China's first marine hydrate exploitation operation is due to be located. The validation of the undrained shear strength prediction model based on CPTU parameters. Different laboratory tests, including pocket penetrometer, torvane, miniature vane and unconsolidated undrained triaxial tests, are employed to solve empirical cone coefficients by statistical and mathematical methods. Finally, an optimized model is proposed to describe the longitudinal distribution of undrained shear strength in calcareous clay strata in the Shenhu area. Research results reveal that average empirical cone coefficients based on total cone resistance, effective resistance, and excess-pore pressure are 13.8, 4.2 and 14.4, respectively. The undrained shear strength prediction model shows a good fit with the laboratory results only within specific intervals based on their compaction degree and gas-bearing conditions. The optimized prediction model in piecewise function format can be used to describe the longitudinal distribution of the undrained shear strength for calcareous clay within all depth intervals from the mud-line to the upper boundary of hydrate-bearing sediments(HBS). The optimized prediction result indicates that the effective cone resistance model is suitable for very soft to firm calcareous clays,the excess-pore pressure model can depict the undrained shear strength for firm to very stiff but gas-free clays,while the total cone resistance model is advantageous for evaluating the undrained shear strength for very stiff and gassy clays. The optimized model in piecewise function format can considerably improve the adaptability of empirical models for calcareous clay in the Shenhu area. These results are significant for safety evaluations of proposed hydrate exploitation projects.
基金supported by the National Natural Science Foundation of China (grants No.41576048,41202080 and 41176052)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) (grant No.PLC201402)+1 种基金the Youth Innovation Promotion Association CAS (2016312)the Scientific Cooperative Project by CNPC and CAS (2015A-4813)
文摘The first marine gas hydrate expedition in China has been conducted by Guangzhou Marine Geological Survey in the Shenhu Area, northern continental slope of the South China Sea. Previous study has analyzed the P-T conditions, geophysical anomalies and saturation calculations of these gas hydrates, but has not documented in detail the migration of gas-bearing fluids in the study area. Based on the interpretations of 2D/3D seismic data, this work identified two types of migration pathways for gas-bearing fluids in the Shenhu area, i.e., vertical and lateral pathways. The vertical pathways(largescale faults, gas chimneys and mud diapirs) presented as steep seismic reflection anomalies, which could be traced downward to the Eocene source rocks and may penetrate into the Late Miocene strata. The deeper gases/fluids might be allowed migrating into the shallower strata through these vertical conduits. However, the distributions showed distinct differences between these pathways. Large-scale faults developed only in the north and northeast of the Shenhu area, while in the drilling area gas chimneys were the sole vertical migration pathways. Since the Pliocene, normal faults, detachment faults and favorable sediments have constituted the lateral pathways in the Shenhu gas hydrate drilling area. Although these lateral pathways were connected with gas chimneys, they exerted different effects on hydrate formation and accumulation. Gas-bearing fluids migrated upward along gas chimneys might further migrate laterally because of the normal faults, thereby enlarging the range of the chimneys. Linking gas chimneys with the seafloor, the detachment faults might act as conduits for escaping gases/fluids. Re-deposited sediments developed at the early stage of the Quaternary were located within the gas hydrate stability zone, so hydrates would be enriched in these favorable sediments. Compared with the migration pathways(large-scale faults and mud diapirs) in the LW3-1 deep-sea oil/gas field, the migration efficiency of the vertical pathways(composed of gas chimneys) in the gas hydrate drilling area might be relatively low. Description and qualitative discrimination of migration pathways in the Shenhu gas hydrate drilling area are helpful to further understand the relationship between good-quality deep source rocks and shallow, mainly biogenicallyproduced, hydrates. As the main source rocks of the Baiyun sag, lacustrine mudstones in the Wenchang and Enping Formations may provide thermogenic methane. Gas chimneys with relatively low migration efficiency created the vertical pathways. Caused by the Dongsha tectonic movement, the release of overpressured fluids might reduce the vertical migration rates of the thermogenic methane. The thick bathyal/abyssal fine-grained sediments since the Late Miocene provided migration media with low permeability. These preconditions may cause carbon isotopic fractionation ofthermogenic methane during long-distance vertical migrations. Therefore, although geochemical analyses indicate that the methane forming gas hydrate in the Shenhu area was mainly produced biogenically, or was mixed methane primarily of microbial origin, thermogenic methane still contribute significantly.
文摘Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.
基金supported by the National 973 Basic Research Program (Grant No. 2009CB219502)National Natural Science Foundation of China (Grant No. 41072084)
文摘BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.
基金Jointly funded by a major research plan of National Natural Science Foundation of China(51991365)titled“Multi-Field Spatial-Temporal Evolution Laws of Phase Transition and Seepage of Natural Gas Hydrate in Reservoirs”and a geological survey project initiated by China Geological Survey(DD20190226)titled“Implementation of Natural Gas Hydrate Production Test in Pilot Test Area in Shenhu Area”.
文摘Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012,41561144006,11174312 and 11404366
文摘Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in the shadow zone of deep water. We propose a multiple-step fill inversion method to invert sound speed, density and attenuation in deep water. Based on a uniform liquid hMf-space bottom model, sound speed of the bottom is inverted by using the long range TL at low frequency obtained in an acoustic propagation experiment conducted in the South China Sea (SCS) in summer 2014. Meanwhile, bottom density is estimated combining with the Hamilton sediment empirical relationship. Attenuation coefficients at different frequencies are then estimated from the TL data in the shadow zones by using the known sound speed and density as a constraint condition. The nonlinear relationship between attenuation coefficient and frequency is given in the end. Tile inverted bottom parameters can be used to forecast the transmission loss in the deep water area of SCS very we//.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘The global carbon cycle has played a key role in mitigating global warming and climate change.Long-term natural and anthropogenic processes influence the composition,sources,burial rates,and fluxes of carbon in sediments on the continental shelf of China.In this study,the rates,fluxes,and amounts of carbon storage at the centennial scale were estimated and demonstrated using the case study of three fine-grained sediment cores from the central South Yellow Sea area(SYSA) and Min-Zhe belt(MZB),East China Sea.Based on the high-resolution temporal sequences of total carbon(TC)and total organic carbon(TOC)contents,we reconstructed the annual variations of historical marine carbon storage,and explored the influence of terrestrial and marine sources on carbon burial at the centennial scale.The estimated TC storage over 100 years was 1.18×10~8 t in the SYSA and 1.45×10~9 t in the MZB.The corrected TOC storage fluxes at the centennial scale ranged from 17 to 28 t/(km^2·a)in the SYSA and from 56 to 148 t/(km^2·a)in the MZB.The decrease of terrestrial materials and the increase of marine primary production suggest that the TOC buried in the sediments in the SYSA and MZB was mainly derived from the marine autogenetic source.In the MZB,two depletion events occurred in TC and TOC storage from 1985 to 1987 and 2003 to 2006,which were coeval with the water impoundment in the Gezhouba and Three Gorges dams,respectively.The high-resolution records of the carbon storage rates and fluxes in the SYSA and MZB reflect the synchronous responses to human activities and provide an important reference for assessing the carbon sequestration capacity of the marginal seas of China.
基金financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China under Grants: 2013CB835002the National Natural Science Foundation of China under Grants: 41272036
文摘SEM analysis of trunk ornamentation on a compressed palaeoscolecid fossil from the Shipai fauna, Cambrian Series 2 and Stage 4 at Three Gorges, South China, allows a reassignment of the material to a new taxon, Sanxiascolex papillogyrus gen. et sp. nov. The preserved body is entirely annulated. Each annulus is ornamented by four rows of irregularly alternating plates and each plate bears numerous tubercles at the marginal region and a variable number (zero to six) of nodes at its central part. These features are unique among known palaeoscolecids. Comparative analyses with other compressed palaeoscolecid macrofossils and phosphatized material on the pattern of trunk ornamentation indicates that a detailed examination of the cuticle ornament weighs heavily in analyses of their taxonomic distinctions. A similar sclerite pattern to that of S. papillogyrus has been found in some phosphatized palaeoscolecid cuticle fragments as well as in isolated sclerites. The upper series of nodes and tubercles of these sclerites suggest an accretional mode of sclerite growth. The considerable variation in node number observed across the plates of S. papillogyrus demonstrates that phosphatic palaeoscolecid taxonomy based on relatively minor variations in the number of selerite nodes should perhaps be reconsidered. As the origins of the phosphatized specimens are quite diverse, a large variety of isolated sclerites from the Early Palaeozoic may not reflect actual biodiversity.
基金funded by the National Natural Science Foundation of China(grants No.41406080,41273066 and 41106060)
文摘Previous work has largely discussed the relations between sediment structures and accumulation of gas hydrates in the Shenhu area of South China Sea, but has not documented why the gas hydrates occurred at the seafloor topographic highs. Many gas hydrate exploration examples abroad also indicate that the saturation of gas hydrates was higher at seafloor topographic highs. This work aims to understand why gas hydrates accumulated at topographic highs and why their saturation is higher.
基金supported by grants by the National Natural Science Foundation of China (No.41272097)the China Geological Survey Project (No.12120114016601)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (No.CUG120702)the Teaching Laboratory Foundation of China University of Geosciences (Wuhan) (No.SKJ2013085,SKJ2014010)
文摘The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ^(87)Rb/^(86)Sr and ^(87)Sr/^(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ^(87)Sr/^(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.
基金supported by MOST of China 2016YFC0600408Investigation of Rare Metal, Rare Earth, and Rare-scattered Mineral Resources in South China (DD20160056)
文摘1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit recently discovered.Few studies have been made of its petrology,mineralogy,geochemistry,chronology and metallogeny.In recent years,several exploratory drillings have been done in this deposit.These drilling holes,from 380 to 600
基金supported by the National Natural Science Foundation of China(No.41776056)Open Found of Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences)+2 种基金Ministry of Education(No.TPR-2020-06)the China National Hydrate Project(DD20190217)China Postdoctoral Science Foundation(No.2017M622655)。
文摘The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation.
文摘Flavotoxin A was isolated from Pseudomonas cocovenenans subsp. farinofermentans culture in semisolid potato-dextrose-agar medium, which was isolated from fermented corn meal that had caused food poisoning outbreaks in China. The isolation, purification, and chemical structure of this toxin were studied. The NMR spectra, the uv spectra, and molar extinction coefficients, and the mass spectra of Flavotoxin A are in good agreement with those reported for bongkrekic acid. Therefore, Flavotoxin A and bongkrekic acid are the same organic chemical compound; the molecular formula is C_(28)H_(38)O_7. The oral LD_(50) of the purified Flavotoxin A in mice was 3.16mg/kg (1.53-6.15mg/kg). The existence of bongkrekic acid in toxic fermented corn samples collected during food poisoning outbreaks was also confirmed. It is concluded that bongkrekic acid has played an important role in the outbreaks of fermented corn poisoning. 1989 Academic Press, Inc.
基金funded by the National Key Research and Development Program of China(2017YFC0307600)the China Geological Survey Program(DD20190231).
文摘Gas hydrate is one kind of potential energy resources that is buried under deep seafloor or frozen areas.The first trial offshore production from the silty reservoir was conducted in the South China Sea by the China Geological Survey(CGS).During this test,there were many unique characteristics different from the sand reservoir,which was believed to be related to the clayed silt physical properties.In this paper,simulation experiments,facilities analysis,and theoretical calculation were used to confirm the hydrate structure,reservoir thermo-physical property,and bond water movement rule.And the behavior of how they affected production efficiency was analyzed.The results showed that:It was reasonable to use the structure I rather than structure II methane hydrate phase equilibrium data to make the production plan;the dissociation heat absorbed by hydrate was large enough to cause hydrate self-protection or reformation depend on the reservoir thermal transfer and gas supply;clayed silt got better thermal conductivity compared to coarse grain,but poor thermal convection especially with hydrate;clayed silt sediment was easy to bond water,but the irreducible water can be exchanged to free water under high production pressure,and the most obvious pressure range of water increment was 1.9–4.9 MPa.