Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a t...The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a tilt and a gyro, for sensing the angle and angular velocity of the body slope, are used to realize self-balancing controls. OWV, a kind of unicycle robot, can be dealt with as a mobile-inverted-pendulum system for its instability. However, for its possible applications in mobile carriers or robots, it is worth being further developed. In this study, first, the OWV system model will be derived. Next, through the simulations based on the mathematical model, the analysis of system stability and controllability can be evaluated. Last, a concise and realizable method, through system pole-placement and linear quadratic regulator (LQR), will be proposed to design the SBC. The effectiveness, reliability, and feasibility of the proposal will be con- firmed through simulation studies and experimenting on a physical OWV.展开更多
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri...Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.展开更多
A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mi...A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mining vehicle has optimal obstacle performance with center-of-gravity position in the middle of suspension. A virtual prototype based on ADAMS software was built and its obstacle performance was simulated. Simulation results show that the mining vehicle with four independent driven wheels has excellent obstacle performance, the maximum climbing capacity is no less than 30°, the maximal ditch width and shoulder height are no less than wheel radius of mining vehicle. Thus wheeled mining vehicle is feasible for cobalt-enriching crust commercial mining.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was prop...The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.展开更多
The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to...The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box.展开更多
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac...In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control ...In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.展开更多
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In th...This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen– Hedrick–Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.展开更多
With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving...With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.展开更多
Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the craw...Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.展开更多
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,...A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.展开更多
This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed...This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.展开更多
The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency o...The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.展开更多
Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle ...Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
文摘The purpose of this study is to develop a self-balancing controller (SBC) for one-wheeled vehicles (OWVs). The composition of the OWV system includes: a DSP motion card, a wheel motor, and its driver. In addition, a tilt and a gyro, for sensing the angle and angular velocity of the body slope, are used to realize self-balancing controls. OWV, a kind of unicycle robot, can be dealt with as a mobile-inverted-pendulum system for its instability. However, for its possible applications in mobile carriers or robots, it is worth being further developed. In this study, first, the OWV system model will be derived. Next, through the simulations based on the mathematical model, the analysis of system stability and controllability can be evaluated. Last, a concise and realizable method, through system pole-placement and linear quadratic regulator (LQR), will be proposed to design the SBC. The effectiveness, reliability, and feasibility of the proposal will be con- firmed through simulation studies and experimenting on a physical OWV.
文摘Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.
基金Project(DY105-03-02) supported by the State Council Ocean Special Foundation of China
文摘A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mining vehicle has optimal obstacle performance with center-of-gravity position in the middle of suspension. A virtual prototype based on ADAMS software was built and its obstacle performance was simulated. Simulation results show that the mining vehicle with four independent driven wheels has excellent obstacle performance, the maximum climbing capacity is no less than 30°, the maximal ditch width and shoulder height are no less than wheel radius of mining vehicle. Thus wheeled mining vehicle is feasible for cobalt-enriching crust commercial mining.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
基金Supported by the National Natural Science Foundation of China(51475045)
文摘The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.
基金supported by the National Natural Science Foundation of China (Grant No. U1334206 and No. 51475388)Science & Technology Development Project of China Railway Corporation (Grant No. J012-C)
文摘The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box.
基金the support of the National Natural Science Foundation of China (No. 51005189)the National Key Technology R&D Program of China (2009BAG12A01)
文摘In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金supported by the National Nature Science Foundation(U1664263)National Key R&D Program of China(2016YFB0101102)。
文摘In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.
文摘This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen– Hedrick–Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.
基金supported by the Natural Science Foundation of Jiangsu Province(No. BK20151472)the Research Project of Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology) , Ministry of Education (No. 2015KLMT04)
文摘With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.
基金Supported by Postdoctoral Fund of Settling Down in Heilongjiang Province(LBH-Q06094)
文摘Turning mechanism is important assemblies for tracked vehicles. Turning performance is important evaluating indicator. The performance of the turning mechanism directly affect the mobility and productivity of the crawler. However, there are still some problems crying out for solutions in superior turning mechanism for vehicle engineering area. Composition and performance of turning system in agricultural tracked vehicles matched with twin driving differential turning mechanism was introduced, which adopted quiet hydraulic double pumps and double motors, took advantage of flexibility greatly for track vehicle turning and benefit for handling used steering wheel.
基金Supported by the National Natural Science Foundation of China(51375007,51205191)the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University+1 种基金the Funds from the Postgraduate Creative Base in Nanjing University of Aeronautics and Astronauticsthe Research Funding of Nanjing University of Aeronautics and Astronautics(NS2013015)
文摘A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.
文摘This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.
文摘The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.
文摘Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.