The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ...The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.展开更多
Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,medi...Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,mediated by suitable optical media.There are many emerging photonic applications of spin-orbit interactions(SOI)of light,such as control of the optical wave propagation via the spin,enhanced optical manipulation,and generation of structured optical fields.Unfortunately,current applications are based on symmetric SOI,that is,the behaviours of polarized photons with two opposite spins are opposite,leading to the limit of spin-based multiplexers.The symmetry of SOI can be broken in our proposed metasurfaces,consisting of spatially varying birefringence,which can arbitrarily and independently build SOI for two opposite spins without reduction of optical energy usage.We obtain three kinds of dual-functional metasurfaces at visible and infrared wavelengths with high efficiency.Our concept of generation of asymmetric SOI for two spins,using anisotropic metasurfaces,will open new degrees of freedoms for building new types of spin-controlled multifunctional shared-aperture devices for the generation of complex structured optical fields.展开更多
By using the method of density-matrix renormalization-group to solve the different spin spin correlation functions, the nearest-neighbouring entanglement (NNE) and the next-nearest-neighbouring entanglement (NNNE)...By using the method of density-matrix renormalization-group to solve the different spin spin correlation functions, the nearest-neighbouring entanglement (NNE) and the next-nearest-neighbouring entanglement (NNNE) of one-dimensional alternating Heisenberg XY spin chain are investigated in the presence of alternating the-nearestneighbouring interaction of exchange couplings, external magnetic fields and the next-nearest neighbouring interaction. For a dimerised ferromagnetic spin chain, the NNNE appears only above a critical dimerized interaction, meanwhile, the dimerized interaction a effects a quantum phase transition point and improves the NNNE to a large extent. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighbouring (NNN) interaction on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks the NNE below and above a critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always reduces the NNE. The antiferromagnetic NNN interaction results in a large value of NNNE compared with the case where the NNN interaction is ferromagnetic.展开更多
The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local R...The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin–orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations. Based on the numerical results, such a model can be applied to the design of a spin filter device.展开更多
For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. B...For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.展开更多
Through the Jordan Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of G...Through the Jordan Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory. In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields. It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT). In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations. However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order OPT at the tricritical point and an additional new phase called "spin waves", which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.展开更多
We have measured weak antilocalization effects, universal conductance fluctuations, and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs heterostructures. This system possesses st...We have measured weak antilocalization effects, universal conductance fluctuations, and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs heterostructures. This system possesses strong spin-orbit coupling and a high Landé factor. Phase-coherence lengths of 2 - 4 μm at 1.5 - 4.2 K are extracted from the magnetoconductance measurements. The analysis of the coherence-sensitive data reveals that the temperature dependence of the decoherence rate complies with the dephasing mechanism originating from electron-electron interactions in all three experiments. Distinct beating patterns superimposed on the Aharonov-Bohm oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla at the relatively high temperature of 1.5 K. The possibility that these beats are due to the interplay between the Aharonov-Bohm phase and the Berry one, different for electrons of opposite spins in the presence of strong spin-orbit and Zeeman interactions in ring geometries, is carefully investigated. It appears that our data are not explained by this mechanism;rather, a few geometrically-different electronic paths within the ring’s width can account for the oscillations’ modulations.展开更多
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions...Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions.展开更多
The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism. We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various ...The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism. We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures. When both intrinsic and Rashba spin-orbit interactions are present, their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level. When the Rashba spin--orbit interaction is smaller than intrinsic spin-orbit coupling, a weak kink in the conductance appears. The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances. When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling, the divergence becomes more obvious.展开更多
The conductance and polarization are studied in one-dimensional ballistic quantum wire with both Rashba and Dresselhaus spin-orbit interactions.Two kinds of structures are considered in the present work,one with mixtu...The conductance and polarization are studied in one-dimensional ballistic quantum wire with both Rashba and Dresselhaus spin-orbit interactions.Two kinds of structures are considered in the present work,one with mixture of two interactions and the other with sequence structure of them.We find that the conductance and polarization are strongly affected by these two interactions.With both interactions we obtain a multi-peak contour of spin polarization and a dramatic oscillation pattern of spin conductance,which are due to the different combination of the two spin-orbit interactions.展开更多
We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to ...We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.展开更多
Spin glass system is a complex disordered system with a number of local minima separated by entropic barriers. Therefore, parallel tempering Monte Carlo simulation was used in order to get fast thermalisation (to min...Spin glass system is a complex disordered system with a number of local minima separated by entropic barriers. Therefore, parallel tempering Monte Carlo simulation was used in order to get fast thermalisation (to minimize the relaxation time). Distance dependent interaction coupling in 2D is studied in order to show how a spin glass phase transition occurs when couplings between far away spins are permitted by considering Edwards-Anderson Ising spin glass model. The interaction coupling is a quenched random variable whose probability of being non-zero decays with distance between two spin sites rij = |i-j|mod(L/2).The interaction coupling is random and its probability distribution is decaying with the distance between the spins (p(Jij) αrij^-ρ). The model is studied by changing p among three different regimes (p 〉 2D, 4/3 D〈 p 〈 2D, p 〈 4/3D). A phase transition temperature for p = 2, 3, 4 is obtained.展开更多
The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the d...The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.展开更多
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component ...We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot. It is found that the electronic current and spin current are sensitive to the systematic parameters. The interdot spin-flip term does not play a leading role in causing electronic and spin currents. Otherwise the spin precessing terra leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current. Moreover, the spin-orbital interaction suppresses the nonlocal Andreev reflection, so we cannot obtain the pure spin current.展开更多
This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground sta...This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated. It analyses and discusses the scaling behaviour of the entanglement entropy.展开更多
Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit int...Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin^rbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin^rbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.展开更多
Single phase of Fe^3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of ...Single phase of Fe^3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe^3+content. Calorimetric measurements show that the temperature of the phase transition from α-GF x O to β-GF x O increases, while the associated enthalpy change decreases upon increasing Fe^3+content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe^3+ions is antiferromagnetic. Remnant magnetization is observed in the Fe^3+-doped α-GF x O and is attributed to the spin glass in the magnetic sublattice. At high Fe^3+doping level(x = 0.4), two evident peaks are observed in the image part of the AC susceptibility χ ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α-GF0.4O is suggested to be the behavior of two spin glasses.展开更多
We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya(DM) interaction in the presence of a transverse magnetic field.An analytical expression for the geometric phas...We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya(DM) interaction in the presence of a transverse magnetic field.An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit.We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.展开更多
We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are...We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are analyzed exactly. The general expression of spin squeezing factor is presented for arbitrary-range spin interaction. For the nearest-neighbor and next-nearest neighbor spin interaction model, the analytic solutions are reduced from the general expressions. It is shown that the maximum spin squeezing is enhanced for the general arbitrary-range spin interaction compared with the nearest-neighbor interaction model as the long-range interaction with arbitrary sites enforces stronger correlation.展开更多
The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and o...The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and one.The oscillation period decreases with either the interaction in the spin ladder or the Dzyaloshinsky-Moriya interaction increasing.When the system relates to the environment,both entanglement and fidelity oscillate with a damping rate related to intrinsic decoherence rate,the interaction in the spin ladder,and the Dzyaloshinsky-Moriya interaction.展开更多
基金the Natural Science Foundation of Inner Mongolia of China(Grant No.2019MS01021)the Research Program of Science and Technology at Universi-ties of Inner Mongolia Autonomous Region,China(Grant No.NJZY21454)the Theoretical Physics Discipline De-velopment and Communication Platform of Inner Mongolia University(Grant No.12147216).
文摘The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
基金supported by 973 Program of China (2013CBA01700)National Natural Science Funds (61622508, 61575032)
文摘Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,mediated by suitable optical media.There are many emerging photonic applications of spin-orbit interactions(SOI)of light,such as control of the optical wave propagation via the spin,enhanced optical manipulation,and generation of structured optical fields.Unfortunately,current applications are based on symmetric SOI,that is,the behaviours of polarized photons with two opposite spins are opposite,leading to the limit of spin-based multiplexers.The symmetry of SOI can be broken in our proposed metasurfaces,consisting of spatially varying birefringence,which can arbitrarily and independently build SOI for two opposite spins without reduction of optical energy usage.We obtain three kinds of dual-functional metasurfaces at visible and infrared wavelengths with high efficiency.Our concept of generation of asymmetric SOI for two spins,using anisotropic metasurfaces,will open new degrees of freedoms for building new types of spin-controlled multifunctional shared-aperture devices for the generation of complex structured optical fields.
基金Project supported by the Key Higher Education Program of Hubei Province, China (Grant No Z20052201)Natural Science Foundation of Hubei Province, China (Grant No 2006ABA055)Postgraduate Program of Hubei Normal University of China(Grant No 2007D20)
文摘By using the method of density-matrix renormalization-group to solve the different spin spin correlation functions, the nearest-neighbouring entanglement (NNE) and the next-nearest-neighbouring entanglement (NNNE) of one-dimensional alternating Heisenberg XY spin chain are investigated in the presence of alternating the-nearestneighbouring interaction of exchange couplings, external magnetic fields and the next-nearest neighbouring interaction. For a dimerised ferromagnetic spin chain, the NNNE appears only above a critical dimerized interaction, meanwhile, the dimerized interaction a effects a quantum phase transition point and improves the NNNE to a large extent. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighbouring (NNN) interaction on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks the NNE below and above a critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always reduces the NNE. The antiferromagnetic NNN interaction results in a large value of NNNE compared with the case where the NNN interaction is ferromagnetic.
基金Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 201202085)the National Natural Science Foundation of China(Grant No. 11004138)+1 种基金the Excellent Young Scientists Fund of Liaoning Provence, China (Grant No. LJQ2011020)the Young Scientists Fund of Shenyang Ligong University (Grant No. 2011QN-04-11)
文摘The spin-polarized linear conductance spectrum and current–voltage characteristics in a four-quantum-dot ring embodied into Aharonov–Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin–orbit interaction. It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π, and that Hubbard U cannot influence the electron transport properties in this case. When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength, the electronic spin polarization can reach a maximum value. Furthermore, by adjusting the bias voltages applied to the leads, the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations. Based on the numerical results, such a model can be applied to the design of a spin filter device.
文摘For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10774051 and 10804034the National 973 Project under Grant No.2006CB921605+1 种基金the Research Fund for the Doctoral Program of Higher Education under Grant No.20090142110063the National Science Foundation of Hubei Province of China under Grant No.2008CDB003
文摘Through the Jordan Wigner transformation, the entanglement entropy and ground state phase diagrams of exactly solvable spin model with alternating and multiple spin exchange interactions are investigated by means of Green's function theory. In the absence of four-spin interactions, the ground state presents plentiful quantum phases due to the multiple spin interactions and magnetic fields. It is shown that the two-site entanglement entropy is a good indicator of quantum phase transition (QPT). In addition, the alternating interactions can destroy the magnetization plateau and wash out the spin-gap of low-lying excitations. However, in the presence of four-spin interactions, apart from the second order QPTs, the system manifests the first order OPT at the tricritical point and an additional new phase called "spin waves", which is due to the collapse of the continuous tower-like low-lying excitations modulated by the four-spin interactions for large three-spin couplings.
文摘We have measured weak antilocalization effects, universal conductance fluctuations, and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs heterostructures. This system possesses strong spin-orbit coupling and a high Landé factor. Phase-coherence lengths of 2 - 4 μm at 1.5 - 4.2 K are extracted from the magnetoconductance measurements. The analysis of the coherence-sensitive data reveals that the temperature dependence of the decoherence rate complies with the dephasing mechanism originating from electron-electron interactions in all three experiments. Distinct beating patterns superimposed on the Aharonov-Bohm oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla at the relatively high temperature of 1.5 K. The possibility that these beats are due to the interplay between the Aharonov-Bohm phase and the Berry one, different for electrons of opposite spins in the presence of strong spin-orbit and Zeeman interactions in ring geometries, is carefully investigated. It appears that our data are not explained by this mechanism;rather, a few geometrically-different electronic paths within the ring’s width can account for the oscillations’ modulations.
文摘Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10934010)the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305)
文摘The spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism. We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures. When both intrinsic and Rashba spin-orbit interactions are present, their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level. When the Rashba spin--orbit interaction is smaller than intrinsic spin-orbit coupling, a weak kink in the conductance appears. The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances. When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling, the divergence becomes more obvious.
基金Supported by the National Natural Science Foundation of China(10774412)
文摘The conductance and polarization are studied in one-dimensional ballistic quantum wire with both Rashba and Dresselhaus spin-orbit interactions.Two kinds of structures are considered in the present work,one with mixture of two interactions and the other with sequence structure of them.We find that the conductance and polarization are strongly affected by these two interactions.With both interactions we obtain a multi-peak contour of spin polarization and a dramatic oscillation pattern of spin conductance,which are due to the different combination of the two spin-orbit interactions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61204107)the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201120799)
文摘We theoretically investigate the spin-orbit interaction in GaAs/AlxGal_xAs coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.
文摘Spin glass system is a complex disordered system with a number of local minima separated by entropic barriers. Therefore, parallel tempering Monte Carlo simulation was used in order to get fast thermalisation (to minimize the relaxation time). Distance dependent interaction coupling in 2D is studied in order to show how a spin glass phase transition occurs when couplings between far away spins are permitted by considering Edwards-Anderson Ising spin glass model. The interaction coupling is a quenched random variable whose probability of being non-zero decays with distance between two spin sites rij = |i-j|mod(L/2).The interaction coupling is random and its probability distribution is decaying with the distance between the spins (p(Jij) αrij^-ρ). The model is studied by changing p among three different regimes (p 〉 2D, 4/3 D〈 p 〈 2D, p 〈 4/3D). A phase transition temperature for p = 2, 3, 4 is obtained.
基金Project supported by the Science and Technology Foundation of China University of Mining and Technology (Grant No OK061066)
文摘The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.
基金Project supported by the Natural Science Foundation of Education Bureau of Jiangsu Province of China (Grant Nos. 08KJB140002 and 09KJD430004)
文摘We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot (QD) ring, which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot. It is found that the electronic current and spin current are sensitive to the systematic parameters. The interdot spin-flip term does not play a leading role in causing electronic and spin currents. Otherwise the spin precessing terra leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current. Moreover, the spin-orbital interaction suppresses the nonlocal Andreev reflection, so we cannot obtain the pure spin current.
基金supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii--Moriya interaction under an external magnetic field. The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated. It analyses and discusses the scaling behaviour of the entanglement entropy.
基金supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China (GrantNo. 11551145)
文摘Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin^rbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin^rbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.
基金supported by the National Basic Research Program of China(Grant No.2010CB731605)the National Science Fund for Distinguished Young Scholars of China(Grant No.51025103)+3 种基金the National Natural Science Foundation of China(Grant Nos.51172198 and 51102206)the Natural Science Foundation of Hebei Province,China(Grant No.E2014203144)the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province,China(Grant No.YQ2014009)the Research Program of the College Science&Technology of Hebei Province,China(Grant No.QN2014047)
文摘Single phase of Fe^3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe^3+content. Calorimetric measurements show that the temperature of the phase transition from α-GF x O to β-GF x O increases, while the associated enthalpy change decreases upon increasing Fe^3+content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe^3+ions is antiferromagnetic. Remnant magnetization is observed in the Fe^3+-doped α-GF x O and is attributed to the spin glass in the magnetic sublattice. At high Fe^3+doping level(x = 0.4), two evident peaks are observed in the image part of the AC susceptibility χ ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α-GF0.4O is suggested to be the behavior of two spin glasses.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB923102)the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807)the National Natural Science Foundation of China (Grant No. 11074199)
文摘We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya(DM) interaction in the presence of a transverse magnetic field.An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit.We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.
基金Supported by the National Natural Science Foundation of China under Grant No 51427801
文摘We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin spin interaction and transverse field model. The collective spin noises at any time are analyzed exactly. The general expression of spin squeezing factor is presented for arbitrary-range spin interaction. For the nearest-neighbor and next-nearest neighbor spin interaction model, the analytic solutions are reduced from the general expressions. It is shown that the maximum spin squeezing is enhanced for the general arbitrary-range spin interaction compared with the nearest-neighbor interaction model as the long-range interaction with arbitrary sites enforces stronger correlation.
基金Supported by the National Natural Science Foundation of China under Grant No.11074184the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and one.The oscillation period decreases with either the interaction in the spin ladder or the Dzyaloshinsky-Moriya interaction increasing.When the system relates to the environment,both entanglement and fidelity oscillate with a damping rate related to intrinsic decoherence rate,the interaction in the spin ladder,and the Dzyaloshinsky-Moriya interaction.