A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. ...A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. The scheme meets the condition of a strongly dissipative cavity easily and has a simplified feedback control. Although the spontaneous emission still plays a negative role in the proposed system, we can improve the feedback control to reduce its effect.展开更多
This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveni...This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveniently tuning the titled angle of one half-wave plate, it can obtain arbitrary four-atom entangled decoherence-free states with a successful probability of 1 as long as there is no photon loss.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11064016 and 61068001)
文摘A scheme is presented tor generating steady tour-atom decoherence-tree states via tour atoms with the Raman level configuration interacting with a single-mode vacuum cavity field by using quantum-jump-based feedback. The scheme meets the condition of a strongly dissipative cavity easily and has a simplified feedback control. Although the spontaneous emission still plays a negative role in the proposed system, we can improve the feedback control to reduce its effect.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University,China (Grant No 2007-35)
文摘This paper proposes a scheme to generate arbitrary four-atom entangled decoherence-free states by using simple linear optical elements, four one-sided cavities in which four atoms are confined respectively. By conveniently tuning the titled angle of one half-wave plate, it can obtain arbitrary four-atom entangled decoherence-free states with a successful probability of 1 as long as there is no photon loss.