期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Rainfall Assimilation Using a New Four-Dimensional Variational Method:A Single-Point Observation Experiment
1
作者 刘娟娟 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期735-742,共8页
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte... Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models. 展开更多
关键词 data assimilation dimension-reduced projection four-dimensional variational data assimilation (DRP-4dvar RAINSTORM numerical simulation
下载PDF
Study and application of an improved four-dimensional variational assimilation system based on the physical-space statistical analysis for the South China Sea
2
作者 Yumin Chen Jie Xiang +2 位作者 Huadong Du Sixun Huang Qingtao Song 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期135-146,共12页
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A... The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system. 展开更多
关键词 four-dimensional variational data assimilation(4D-Var) physical space analysis system(PSAS) conjugate gradient algorithm(CG) minimal residual algorithm(MINRES) South China Sea
下载PDF
Impact of FY-3D MWRI Radiance Assimilation in GRAPES 4DVar on Forecasts of Typhoon Shanshan 被引量:4
3
作者 Hongyi XIAO Wei HAN +3 位作者 Hao WANG Jincheng WANG Guiqing LIU Changshan XU 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期836-850,共15页
In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) sy... In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan. 展开更多
关键词 Fengyun-3D(FY-3D) Microwave Radiation Imager(MWRI) Global/Regional assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4dvar) typhoon forecast
原文传递
A New Approach to Data Assimilation 被引量:1
4
作者 王斌 赵颖 《Acta meteorologica Sinica》 SCIE 2006年第3期275-282,共8页
A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation (4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as 'threedimens... A significant attempt to design a timesaving and efficient four-dimensional variational data assimilation (4DVar) has been made in this paper, and a new approach to data assimilation, which is noted as 'threedimensional variational data assimilation of mapped observation (3DVM)' is proposed, based on the new concept of mapped observation and the new idea of backward 4DVar. Like the available 4DVar, 3DVM produces an optimal initial condition (IC) that is consistent with the prediction model due to the inclusion of model constraints and best fits the observations in the assimilation window through the model solution trajectory. Different from the 4DVar, the IC derived from 3DVM is located at the end of the assimilation window rather than at the beginning conventionally. This change greatly reduces the computing cost for the new approach, which is almost the same as that of the three-dimensional variational data assimilation (3DVar). Especially, such a change is able to improve assimilation accuracy because it does not need the tangential linear and adjoint approximations to calculate the gradient of cost function. Therefore, in numerical test, the new approach produces better IC than 4DVar does for 72-h simulation of TY9914 (Dan), by assimilating the three-dimensional fields of temperature and wind retrieved from the Advanced Microwave Sounding Unit-A (AMSU-A) observations. Meanwhile, it takes only 1/7 of the computing cost that the 4DVar requires for the same initialization with the same retrieved data. 展开更多
关键词 mapped observation variational data assimilation timesaving backward 4dvar
原文传递
Accounting for CO2 Variability over East Asia with a Regional Joint Inversion System and Its Preliminary Evaluation 被引量:2
5
作者 xingxia kou xiangjun tian +2 位作者 meigen zhang zhen peng xiaoling zhang 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期834-851,共18页
A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical tra... A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolu- tion of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the perform- ance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation net- work in different CO2 flux situations. The results indicate that more observation sites would be useful to systematic- ally improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system. 展开更多
关键词 surface CO2 flux inversion proper orthogonal decomposition (PDO) four-dimensional variational dataassimilation 4dvar joint assimilation regional transport model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部