With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficienc...With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.展开更多
The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the...The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the equations of motion of the probability amplitudes and cross section of the collision system are obtained. Numerical calculations are performed for the Ca+ Sr+ system, with the results showing that the peak of the LICET spectrum appears at a resonant frequency of the transfer laser. The magnitude of the obtained collision cross section is in the order of 10-16 cm2, and is comparable to that obtained in atomic systems, which indicates the validity of the established four-level model.展开更多
A four-level decay model of ~6P_(7/2) excited state of Eu^(2+_ ion in KMgF_3: Eu^(2+) has been proposed. The decay profiles of the ~6P_(7/2) excited state of Eu^(2+) are two exponential and the physical implication o...A four-level decay model of ~6P_(7/2) excited state of Eu^(2+_ ion in KMgF_3: Eu^(2+) has been proposed. The decay profiles of the ~6P_(7/2) excited state of Eu^(2+) are two exponential and the physical implication of each term in the fit equation responsible for the model is interpreted. The data obtained spectroscopically are in good agreement with the fit results.展开更多
The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active swit...The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.展开更多
基金supported by the National Moon Exploration Program of China (No. TY3Q20110020)in part supported by the 13th Five-Year Community Technology Research Program of National Equipment Development Department of China (No.41409020301)the National Natural Science Foundation of China (50971094)
文摘With the development of EMC technology, EMC assessment has become increasingly important in EMC design. Although numerous EMC assessment models are available today, few of them can provide a tradeoff between efficiency and accuracy for the specific case of military vehicular communication systems. Face to this situation, a modified four-level assessment model is proposed in the paper. First, the development of EMC assessment technology is briefly reviewed, and the theoretical mechanism of EMI environment is introduced. Then, the architecture of the proposed model is outlined, and the assessment methods are explored. To demonstrate the application of it, an example involving a communication system in a military vehicle is presented. From the physical layer to the signal layer, a hierarchical assessment on the entire system is successfully performed based on the proposed model, and we can make a qualitative EMC assessment on the EMC performance of the system. Based on a comparison with the traditional model, we conclude that the proposed model is more accurate, more efficient and less time-consuming, which is suitable for the EMC assessment on militaryvehicular communication systems. We hope that the proposed model will serve as a useful reference for system-level EMC assessments for other systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674036 and 10774033)Program of Excellent Team in Harbin Institute of Technology,China
文摘The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the equations of motion of the probability amplitudes and cross section of the collision system are obtained. Numerical calculations are performed for the Ca+ Sr+ system, with the results showing that the peak of the LICET spectrum appears at a resonant frequency of the transfer laser. The magnitude of the obtained collision cross section is in the order of 10-16 cm2, and is comparable to that obtained in atomic systems, which indicates the validity of the established four-level model.
基金the national key project for fundamental research.
文摘A four-level decay model of ~6P_(7/2) excited state of Eu^(2+_ ion in KMgF_3: Eu^(2+) has been proposed. The decay profiles of the ~6P_(7/2) excited state of Eu^(2+) are two exponential and the physical implication of each term in the fit equation responsible for the model is interpreted. The data obtained spectroscopically are in good agreement with the fit results.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB4201602)the National Natural Science Foundation of China(Grant No.52002409).
文摘The four-level active neutral point clamped(ANPC)inverter has become increasingly widely used in the renewable energy indus-try since it offers one more voltage level without increasing the total number of active switches compared to the three-level ANPC inverter.The model predictive current control(MPCC)is a promising control method for multi-level inverters.However,the conven-tional MPCC suffers from high computational complexity and tedious weighting factor tuning in multi-level inverter applications.A low-complexity MPCC without weighting factors for a four-level ANPC inverter is proposed in this paper.The computational burden and voltage vector candidate set are reduced according to the relationship between voltage vector and neutral point voltage balance.The proposed MPCC shows excellent steady-state and dynamics performances while ensuring the neutral point voltage balancing.The efficacy of the proposed MPCC is verified by simulation and experimental results.