The unprecedented rate of metro construction has led to a highly complex network of metro lines.Tunnels are being overlapped to an ever-increasing degree.This paper investigates the deformation response of double-trac...The unprecedented rate of metro construction has led to a highly complex network of metro lines.Tunnels are being overlapped to an ever-increasing degree.This paper investigates the deformation response of double-track overlapped tunnels in Tianjin,China using finite element analysis(FEA)and field monitoring,considering the attributes of different tunneling forms.With respect to the upper tunneling,the results of the FEA and field monitoring showed that the maximum vertical displacements of the ground surface during the tail passage were 2.06 mm,2.25 mm and 2.39 mm obtained by the FEA,field monitoring and Peck calculation,respectively;the heaves on the vertical displacement curve were observed at 8 m(1.25D,where D is the diameter of the tunnel)away from the center of the tunnel and the curve at both sides was asymmetrical.Furthermore,the crown and bottom produce approximately0.38 mm and 1.26 mm of contraction,respectively.The results of the FEA of the upper and lower sections demonstrated that the tunneling form has an obvious influence on the deformation response of the double-track overlapped tunnel.Compared with the upper tunneling,the lower tunneling exerted significantly less influence on the deformation response,which manifested as a smaller displacement of the strata and deformation of the existing tunnel.The results of this study on overlapped tunnels can provide a reference for similar projects in the future.展开更多
Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower o...Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.展开更多
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the...The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.展开更多
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield...The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.展开更多
Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites.This study proposes a new combined reinforcement method using a foundation grouting oblique pipe ...Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites.This study proposes a new combined reinforcement method using a foundation grouting oblique pipe roof.The former improves the bearing capacity of the subsoil,and the latter blocks the transmission of soil deformation,which weakens the influence of construction during overlapped tunnel under-crossing.Based on this new method,a case study of the shield tunneling response to an old building in Line 6 of China’s Chengdu Metro is presented.Additionally,three-dimensional numerical models without reinforcement,traditional foundation grouting reinforcement,and the new combined reinforcement schemes were compared.The numerical simulation performance was verified using a set of field instrumentation data,which demonstrated that the old building response to the overlapped tunnels was under control,and the maximum deformation,angular distortion,and principal tensile strain of the building were 5.25 mm,5.1010–6 rad/m,and 0.0081%,respectively.Compared with the traditional reinforcement scheme,the deformation,angular distortion,and principal tensile strain in the combined reinforcement scheme were reduced by 54.78%,71.02%,and 70.22%,respectively.These results have important implications for the design and construction of shield tunnels and their response to old buildings.展开更多
In this work,deformations and internal forces of an existing tunnel subjected to a closely overlapped shield tunneling are monitored and analyzed using a series of physical model experiments and numerical simulations....In this work,deformations and internal forces of an existing tunnel subjected to a closely overlapped shield tunneling are monitored and analyzed using a series of physical model experiments and numerical simulations.Effects of different excavation sequences and speeds are explicitly considered in the analysis.The results of the physical model experiments show that the bottom-up tunneling procedure is better than the top-down tunneling procedure.The incurred deformations and internal forces of the existing tunnel increase with the excavation speed and the range of influence areas also increase accordingly.For construction process control,real-time monitoring of the power tunnel is used.The monitoring processes feature full automation,adjustable frequency,real-time monitor and dynamic feedback,which are used to guide the construction to achieve micro-disturbance control.In accordance with the situation of crossing construction,a numerical study on the performance of power tunnel is carried out.Construction control measures are given for the undercrossing construction,which helps to accomplish the desired result and meet protection requirements of the existing tunnel structure.Finally,monitoring data and numerical results are compared,and the displacement and joint fracture change models in the power tunnel subject to the overlapped shield tunnel construction are analyzed.展开更多
基金financially supported by the Open Project of the State Key Laboratory of Disaster Reduction in Civil Engineering(Grant No.SLDRCE17-01)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the National Natural Science Foundation of China(Grant No.51808387)。
文摘The unprecedented rate of metro construction has led to a highly complex network of metro lines.Tunnels are being overlapped to an ever-increasing degree.This paper investigates the deformation response of double-track overlapped tunnels in Tianjin,China using finite element analysis(FEA)and field monitoring,considering the attributes of different tunneling forms.With respect to the upper tunneling,the results of the FEA and field monitoring showed that the maximum vertical displacements of the ground surface during the tail passage were 2.06 mm,2.25 mm and 2.39 mm obtained by the FEA,field monitoring and Peck calculation,respectively;the heaves on the vertical displacement curve were observed at 8 m(1.25D,where D is the diameter of the tunnel)away from the center of the tunnel and the curve at both sides was asymmetrical.Furthermore,the crown and bottom produce approximately0.38 mm and 1.26 mm of contraction,respectively.The results of the FEA of the upper and lower sections demonstrated that the tunneling form has an obvious influence on the deformation response of the double-track overlapped tunnel.Compared with the upper tunneling,the lower tunneling exerted significantly less influence on the deformation response,which manifested as a smaller displacement of the strata and deformation of the existing tunnel.The results of this study on overlapped tunnels can provide a reference for similar projects in the future.
基金National Natural Science Foundation of China,Grant/Award Number:52168059Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:NJYT23103Fundamental Research Funds in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:2023QNJS159。
文摘Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.
基金supported by the Tianjin Research Program of Application Foundation Advanced Technology (14JCYBJC21900)the National Natural Science Foundation of China under grants 51278327
文摘The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
基金financially supported by the National Natural Science Foundation of China(Grant No.52078334)the National Key Research and Development Program of China(Grant No.2017YFC0805402)the Tianjin Research Innovation Project for Postgraduate Students(Grant No.2021YJSB141).
文摘The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction.
基金funding provided by the National Natural Science Foundation of China(Grant No.51808469)the Basic Applied Research Projects of the Sichuan Science and Technology Department(Grant No.2022NSFSC0442).
文摘Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites.This study proposes a new combined reinforcement method using a foundation grouting oblique pipe roof.The former improves the bearing capacity of the subsoil,and the latter blocks the transmission of soil deformation,which weakens the influence of construction during overlapped tunnel under-crossing.Based on this new method,a case study of the shield tunneling response to an old building in Line 6 of China’s Chengdu Metro is presented.Additionally,three-dimensional numerical models without reinforcement,traditional foundation grouting reinforcement,and the new combined reinforcement schemes were compared.The numerical simulation performance was verified using a set of field instrumentation data,which demonstrated that the old building response to the overlapped tunnels was under control,and the maximum deformation,angular distortion,and principal tensile strain of the building were 5.25 mm,5.1010–6 rad/m,and 0.0081%,respectively.Compared with the traditional reinforcement scheme,the deformation,angular distortion,and principal tensile strain in the combined reinforcement scheme were reduced by 54.78%,71.02%,and 70.22%,respectively.These results have important implications for the design and construction of shield tunnels and their response to old buildings.
基金The authors would like to acknowledge the financial support from National Natural Science Foundation of China-China(41372273)Shanghai Science and Technology Development Funds-China(14231200600,15DZ1203900,16DZ1200400).
文摘In this work,deformations and internal forces of an existing tunnel subjected to a closely overlapped shield tunneling are monitored and analyzed using a series of physical model experiments and numerical simulations.Effects of different excavation sequences and speeds are explicitly considered in the analysis.The results of the physical model experiments show that the bottom-up tunneling procedure is better than the top-down tunneling procedure.The incurred deformations and internal forces of the existing tunnel increase with the excavation speed and the range of influence areas also increase accordingly.For construction process control,real-time monitoring of the power tunnel is used.The monitoring processes feature full automation,adjustable frequency,real-time monitor and dynamic feedback,which are used to guide the construction to achieve micro-disturbance control.In accordance with the situation of crossing construction,a numerical study on the performance of power tunnel is carried out.Construction control measures are given for the undercrossing construction,which helps to accomplish the desired result and meet protection requirements of the existing tunnel structure.Finally,monitoring data and numerical results are compared,and the displacement and joint fracture change models in the power tunnel subject to the overlapped shield tunnel construction are analyzed.