A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particl...A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particle clusterstate under the control of the supervisor (Bob).The feature of this scheme is that the teleportation between the senderand the receiver depends on the control of the supervisor.展开更多
We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsod...We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.展开更多
In order to improve the eavesdropping detection efficiency in a two-step quantum direct communication protocol, an improved eavesdropping detection strategy using the four-particle cluster state is proposed, in which ...In order to improve the eavesdropping detection efficiency in a two-step quantum direct communication protocol, an improved eavesdropping detection strategy using the four-particle cluster state is proposed, in which the four-particle cluster state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively using the constraint between the information that the eavesdropper can obtain and the interference that has been introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol using EPR pair block as detection particles will be 50%; while the proposed strategy's detection rate will be 75%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs ...A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.展开更多
We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurement...We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.展开更多
We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our ...We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.展开更多
We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs ...We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.展开更多
A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states ...A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.展开更多
We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another pub...We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.展开更多
In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling struct...In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.展开更多
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco...We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.展开更多
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct ...This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quant...This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.展开更多
A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement res...A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.展开更多
We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective...We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.展开更多
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w...Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.展开更多
This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on t...This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.展开更多
基金National Natural Science Foundation of China under Grant No.10404010the Scientific Research Fund of the Educational Department of Jiangxi Province under Grant No.112[2006]the Talent Fund of Jiangxi Normal University under Grant Nos.1186 and 1187
文摘A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particle clusterstate under the control of the supervisor (Bob).The feature of this scheme is that the teleportation between the senderand the receiver depends on the control of the supervisor.
基金Supported by the National Natural Science Foundation of China under Grant No.10674018the National Fundamental Research Program of China under Grant No.2004CB719903
文摘We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.
基金supported by the National Natural Science Foundation of China (61100205)
文摘In order to improve the eavesdropping detection efficiency in a two-step quantum direct communication protocol, an improved eavesdropping detection strategy using the four-particle cluster state is proposed, in which the four-particle cluster state is used to detect eavesdroppers. During the security analysis, the method of the entropy theory is introduced, and two detection strategies are compared quantitatively using the constraint between the information that the eavesdropper can obtain and the interference that has been introduced. If the eavesdroppers intend to obtain all information, the eavesdropping detection rate of the original two-step quantum direct communication protocol using EPR pair block as detection particles will be 50%; while the proposed strategy's detection rate will be 75%. In the end, the security of the proposed protocol is discussed. The analysis results show that the eavesdropping detection strategy presented is more secure.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.
文摘We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.
基金supported by the National Natural Science Foundation of China (Grant No.60978009 )the National Basic Research Program of China (Grant Nos.2009CB929604 and 2007CB925204)
文摘We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357003
文摘We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.
基金supported by the National Natural Science Foundation of China under Grants No. 61100205, No. 61100208the Project of the Fundamental Research Funds for the Central Universities under Grant No. 2013RC0307
文摘A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10225421 and 10674025), and the Natural Science Foundation of Fujian Province, China (Grant No 2006J0235).
文摘We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.
基金supported by the Natural Science Foundation of China underGrant 61833016 and 61873293the Shaanxi OutstandingYouth Science Foundation underGrant 2020JC-34the Shaanxi Science and Technology Innovation Team under Grant 2022TD-24.
文摘In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump.
文摘We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.
基金supported by the Program for New Century Excellent Talents at the University of China (Grant No NCET-06-0554)the National Natural Science Foundation of China (Grant Nos 60677001 and 10747146)+3 种基金the Science-Technology Fund of AnhuiProvince for Outstanding Youth of China (Grant No 06042087)the Key Fund of the Ministry of Education of China (Grant No 206063)the Natural Science Foundation of Guangdong Province of China (Grant Nos 06300345 and 7007806)Natural Science Foundation of Hubei Province of China (Grant No 2006ABA354)
文摘This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the Postdoctal Foundation of Central South University of Chinathe Important Program of Hunan Provincial Education Department of China (Grant No. 06A038)+1 种基金Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation,China (Grant No. 07JJ3013)
文摘This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No. 10774108the Foundation for University Key Young Teacher of Henan Province under Grant No. 2009GGJS-163
文摘A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.
基金Project supported by the National Natural Science Foundation (Grant No 10574022), and the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006).
文摘We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834010,11804001,and 11904160)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA11)+1 种基金the Program of Youth Sanjin Scholar,National Key R&D Program of China(Grant No.2016YFA0301402)the Fund for Shanxi"1331 Project"Key Subjects Construction.
文摘Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
文摘This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.