A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity er...A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.展开更多
A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software ...A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software is developed using LabVIEW, and the offline Compton imaging codes are written in C++. The prototype has been successfully calibrated, and its capabilities for source detection, spectroscopy, and Compton imaging have been demonstrated using a Cs-137 source.The angular resolution of the 662 keV line is 36° FWHM for the simple back-projection method and 9.6° FWHM for the MLEM reconstruction method. The system is ready to be extended to 11-by-11 pixels in the future, and a better imaging quality can be expected due to the better relative position resolution.展开更多
Based on Lucovsky equation,the response solution of 1-D position sensitive detector(PSD) is given under the condition of parallel light oblique incidence and Gaussian beam oblique incidence,and the response characteri...Based on Lucovsky equation,the response solution of 1-D position sensitive detector(PSD) is given under the condition of parallel light oblique incidence and Gaussian beam oblique incidence,and the response characteristics are analyzed by numerical calculation. The relation between oblique incident angle and output current is introduced and illustrated.展开更多
The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made ...The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made by light noise signal.展开更多
As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam positio...As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.展开更多
Cu(In,Ga)Se2(CIGS) based multilayer heterojunction, as one of the best high efficiency thin film solar cells, has attracted great interest due to its outstanding features. However, the present studies are primarily fo...Cu(In,Ga)Se2(CIGS) based multilayer heterojunction, as one of the best high efficiency thin film solar cells, has attracted great interest due to its outstanding features. However, the present studies are primarily focused on the structure optimization and modulation in order to enhance the photoelectric conversion efficiency. Here, we exploit another application of this multilayer heterostructure in photoresistance-modulated position sensitive detector by introducing lateral photoresistance effect.The lateral photoresistance measurements show that this multilayer heterojunction exhibits a wide spectral response(~330 to ~1150 nm) and excellent bipolar photoresistance performances(position sensitivity of ~63.26 X/mm and nonlinearity <4.5%), and a fast response speed(rise and fall time of ~14.46 and^14.42 ms, respectively). More importantly, based on the lateral photoresistance effect, the CIGS heterostructure may also be developed as a position-dependent resistance memory device, which can be modulated by changing laser intensity, wavelength, and bias voltage with excellent stability and repeatability, and the position resolution reaches up to 1 lm. These results can be well explained by considering the diffusion and the drift model of carriers in the CIGS multilayer heterojunction. This work provides a new approach of achieving novel photoelectric sensors and memory devices based on the traditional photovoltaic heterostructures.展开更多
An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle...An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.展开更多
High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two...High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two-dimensional(2D)topological semimetals promising candidates for the realization of multifunctional optoelectronic devices.Here,we demonstrated the in-situ construction of high-performance 1T’-MoTe_(2)/Ge Schottky junction device by inserting an ultrathin AlOx passivation layer.The good detection performance with an ultra-broadband detection wavelength range of up to 10.6 micron,an ultrafast response time of~160 ns,and a large specific detectivity of over 109 Jones in mid-infrared(MIR)range surpasses that of most 2D materials-based IR sensors,approaching the performance of commercial IR photodiodes.The on-chip integrated device arrays with 64 functional detectors feature high-resolution imaging capability at room temperature.All these outstanding detection features have enabled the demonstration of position-sensitive detection applications.It demonstrates an exceptional position sensitivity of 14.9 mV/mm,an outstanding nonlinearity of 6.44%,and commendable trajectory tracking and optoelectronic demodulation capabilities.This study not only offers a promising route towards room-temperature MIR optoelectronic applications,but also demonstrates a great potential for application in optical sensing systems.展开更多
2D position sensitive, single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) ...2D position sensitive, single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) in Brookhaven National Laboratory (BNL). This is the first large scale application of the novel Si stripixel detector in a real large experiment after many years of research and development at BNL. The first and second prototype fabrication runs of the SVX stripixel detectors were carried out successfully in BNL’s Si detector development and processing Lab. The processing of these stripixel detectors is similar to that for the standard single-sided strip detectors: one-sided processing, single implant for the pixel (strip) electrodes, etc. The only additional processing step is the double metal process, a technology that is simple and well matured by many Si detector processing industries and labs, including BNL. The laser and beam tests on those prototype detectors show the 2D position sensitivity and good position resolution in both X and U coordinates (about 25 μm for 80 μm pitch). For the mass production of 400 sensors needed for the Si SVX, the processing technology has been successfully transferred to the industrial: Hamamatsu Photonics (HPK). HPK has produced a pre-production run of stripixel sensors with the full PHENIX SVX specification on 150 mm diameter wafers. The laser tests on these pre-production wafers show good signal to noise ratio (about 20∶1).展开更多
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
文摘A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.
文摘A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software is developed using LabVIEW, and the offline Compton imaging codes are written in C++. The prototype has been successfully calibrated, and its capabilities for source detection, spectroscopy, and Compton imaging have been demonstrated using a Cs-137 source.The angular resolution of the 662 keV line is 36° FWHM for the simple back-projection method and 9.6° FWHM for the MLEM reconstruction method. The system is ready to be extended to 11-by-11 pixels in the future, and a better imaging quality can be expected due to the better relative position resolution.
基金Program of the Science and Technology Department of Fujian Province(2007F5040)
文摘Based on Lucovsky equation,the response solution of 1-D position sensitive detector(PSD) is given under the condition of parallel light oblique incidence and Gaussian beam oblique incidence,and the response characteristics are analyzed by numerical calculation. The relation between oblique incident angle and output current is introduced and illustrated.
文摘The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made by light noise signal.
基金Supported by the National Science Foundation of China (10675118, 11175173)
文摘As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.
基金supported by the National Natural Science Foundation of China (11704094, 11504076, 51372064, 61405040, 51622205, 61675027, 51432005, and 61505010)the Natural Science Foundation of Hebei Province (F2019201047, F2018201198, F2017201141, and E2017201227)the Natural Science Foundation for Distinguished Young Scholars of Hebei University (2015JQ03)。
文摘Cu(In,Ga)Se2(CIGS) based multilayer heterojunction, as one of the best high efficiency thin film solar cells, has attracted great interest due to its outstanding features. However, the present studies are primarily focused on the structure optimization and modulation in order to enhance the photoelectric conversion efficiency. Here, we exploit another application of this multilayer heterostructure in photoresistance-modulated position sensitive detector by introducing lateral photoresistance effect.The lateral photoresistance measurements show that this multilayer heterojunction exhibits a wide spectral response(~330 to ~1150 nm) and excellent bipolar photoresistance performances(position sensitivity of ~63.26 X/mm and nonlinearity <4.5%), and a fast response speed(rise and fall time of ~14.46 and^14.42 ms, respectively). More importantly, based on the lateral photoresistance effect, the CIGS heterostructure may also be developed as a position-dependent resistance memory device, which can be modulated by changing laser intensity, wavelength, and bias voltage with excellent stability and repeatability, and the position resolution reaches up to 1 lm. These results can be well explained by considering the diffusion and the drift model of carriers in the CIGS multilayer heterojunction. This work provides a new approach of achieving novel photoelectric sensors and memory devices based on the traditional photovoltaic heterostructures.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60578051.
文摘An improved method of angle measurement is proposed based on a parallel plate interferometer. A position detection system is incorporated into a parallel plate interferometer in order to realize large deflection angle measurement. A reflecting mirror is introduced for increasing the measurement resolution. In experiments, a deflection angle of a measured target was measured within ~3° with high accuracy. And as a phase modulating interferometer, it was used to measure a small angular displacement with a repeatability of 5.5 × 10^-8 rad.
基金the National Natural Science Foundation of China(Nos.U22A20138,62374149,and 62375279)the Collaborative Innovation Center of Suzhou Nano Science&Technology.The authors are grateful for the technical support from the Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘High-sensitivity room-temperature multi-dimensional infrared(IR)detection is crucial for military and civilian purposes.Recently,the gapless electronic structures and unique optoelectrical properties have made the two-dimensional(2D)topological semimetals promising candidates for the realization of multifunctional optoelectronic devices.Here,we demonstrated the in-situ construction of high-performance 1T’-MoTe_(2)/Ge Schottky junction device by inserting an ultrathin AlOx passivation layer.The good detection performance with an ultra-broadband detection wavelength range of up to 10.6 micron,an ultrafast response time of~160 ns,and a large specific detectivity of over 109 Jones in mid-infrared(MIR)range surpasses that of most 2D materials-based IR sensors,approaching the performance of commercial IR photodiodes.The on-chip integrated device arrays with 64 functional detectors feature high-resolution imaging capability at room temperature.All these outstanding detection features have enabled the demonstration of position-sensitive detection applications.It demonstrates an exceptional position sensitivity of 14.9 mV/mm,an outstanding nonlinearity of 6.44%,and commendable trajectory tracking and optoelectronic demodulation capabilities.This study not only offers a promising route towards room-temperature MIR optoelectronic applications,but also demonstrates a great potential for application in optical sensing systems.
基金Project(DE-Ac02-98CH10886) supported in part by the US Department of Energy
文摘2D position sensitive, single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) in Brookhaven National Laboratory (BNL). This is the first large scale application of the novel Si stripixel detector in a real large experiment after many years of research and development at BNL. The first and second prototype fabrication runs of the SVX stripixel detectors were carried out successfully in BNL’s Si detector development and processing Lab. The processing of these stripixel detectors is similar to that for the standard single-sided strip detectors: one-sided processing, single implant for the pixel (strip) electrodes, etc. The only additional processing step is the double metal process, a technology that is simple and well matured by many Si detector processing industries and labs, including BNL. The laser and beam tests on those prototype detectors show the 2D position sensitivity and good position resolution in both X and U coordinates (about 25 μm for 80 μm pitch). For the mass production of 400 sensors needed for the Si SVX, the processing technology has been successfully transferred to the industrial: Hamamatsu Photonics (HPK). HPK has produced a pre-production run of stripixel sensors with the full PHENIX SVX specification on 150 mm diameter wafers. The laser tests on these pre-production wafers show good signal to noise ratio (about 20∶1).