This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quant...This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective...We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.展开更多
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w...Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.展开更多
This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on t...This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.展开更多
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is...We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is used, and the multi-ion cluster states can be generated by one step. Both the schemes are insensitive to thermal motion of the ions, all the facilities used in them are well within state of the art.展开更多
We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibration...We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.展开更多
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit stat...Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.展开更多
Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far...Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.展开更多
This paper proposes an alternative scheme for generating cluster-type of entangled coherent states. This scheme is based on resonant interaction of a two-mode cavity with a two-level atom driven by strong classical fi...This paper proposes an alternative scheme for generating cluster-type of entangled coherent states. This scheme is based on resonant interaction of a two-mode cavity with a two-level atom driven by strong classical fields. Thus the required interaction time is greatly shortened, which is very important in view of decoherence.展开更多
This paper proposes a scalable scheme to generate n-atom GHZ states and cluster states by using the basic building block, i.e., a weak coherent optical pulse [α) being reflected successively from a single-atom cavit...This paper proposes a scalable scheme to generate n-atom GHZ states and cluster states by using the basic building block, i.e., a weak coherent optical pulse [α) being reflected successively from a single-atom cavity. In the schemes, coherent state of light is used instead of single photon source, homodyne measurement on coherent light is done kastead of single photon detection, and no need for individually addressing keeps the schemes easy to implement from the experimental point of view. The successful probabilities of our protocols approach unity in the ideal case.展开更多
We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field....We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field. After the realization of simple atomic measurements, the generation of CTESVS in four separate cavities is accomplished within the cavity decay time. In the case of large atom=cavity detuning, the scheme is immune to the effect of atomic spontaneous emission.展开更多
We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam. The two lowest levels...We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam. The two lowest levels of the vertical motion of the electron act as a two-level system, and the quantized vibration of the electron along one of the parallel directions (the x direction) serves as the bosonic mode. The degrees of freedom of the vertical and parallel motions of the trapped electron can be coupled together by a classical laser field. With the proper frequency of the laser field, the cluster states can be realized.展开更多
In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state i...In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.展开更多
We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state...We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state of the cavity. In particular, we have managed to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.展开更多
We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and i...We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and insensitive to Lamb-Dicke parameter. Meanwhile, as it is carried out in a geometric quantum computing fashion, our scheme enables the fast and high-fidelity generation of cluster states. The experimental feasibility is discussed with sophisticated ion trap techniques.展开更多
We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadia...We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadiabatically increasing or decreasing Rabi frequencies of laser.Thus it allows the robust implementation of entanglementagainst certain types of errors.Our scheme is relatively decoherence-free in the sense that excited atomic states are neverpopulated and excited cavity photon states can be made negligible in certain conditions.展开更多
In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam split...In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.展开更多
A scheme for generating cluster states via Raman interaction is proposed. In the scheme, we firstly prepare cluster states of multi-cavities with information encoded in the coherent states and then generate cluster st...A scheme for generating cluster states via Raman interaction is proposed. In the scheme, we firstly prepare cluster states of multi-cavities with information encoded in the coherent states and then generate cluster states of multiatoms, which encode the information in the ground states of A-type atoms. The advantages of our scheme are that the atomic spontaneous radiation can be efficiently reduced since the cavity frequency is largely detuned from the atomic transition frequency and the Hadamard gate operation of the coherent states is replaced by measuring the coherent states.展开更多
基金Project supported by the Postdoctal Foundation of Central South University of Chinathe Important Program of Hunan Provincial Education Department of China (Grant No. 06A038)+1 种基金Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation,China (Grant No. 07JJ3013)
文摘This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the National Natural Science Foundation (Grant No 10574022), and the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006).
文摘We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834010,11804001,and 11904160)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA11)+1 种基金the Program of Youth Sanjin Scholar,National Key R&D Program of China(Grant No.2016YFA0301402)the Fund for Shanxi"1331 Project"Key Subjects Construction.
文摘Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
文摘This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金The project supported by the Scientific Research Fund of the Education Department of Hunan Province under Grant No.06C354the Natural Science Foundation of Hunan Province under Grant No.06JJ5015
文摘We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is used, and the multi-ion cluster states can be generated by one step. Both the schemes are insensitive to thermal motion of the ions, all the facilities used in them are well within state of the art.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022), and the Funds of the Natural . Science of Fujian Province, China (Grant No Z0512006).
文摘We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671087)
文摘Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.
文摘Entanglement in quantum theory is a peculiar concept to scientists. With this concept we are forced to re-consider the cluster property which means that one event is irrelevant to another event when they are fully far away. In the recent works we showed that the quasi-degenerate states induce the violation of cluster property in antiferromagnets when the continuous symmetry breaks spontaneously. We expect that the violation of cluster property will be observed in other materials too, because the spontaneous symmetry breaking is found in many systems such as the high temperature superconductors and the superfluidity. In order to examine the cluster property for these materials, we studied a quantum nonlinear sigma model with U(1) symmetry in the previous work. There we showed that the model does have quasi-degenerate states. In this paper we study the quantum nonlinear sigma model with SU(2) symmetry. In our approach we first define the quantum system on the lattice and then adopt the representation where the kinetic term is diagonalized. Since we have no definition on the conjugate variable to the angle variable, we use the angular momentum operators instead for the kinetic term. In this representation we introduce the states with the fixed quantum numbers and carry out numerical calculations using quantum Monte Carlo methods and other methods. Through analytical and numerical studies, we conclude that the energy of the quasi-degenerate state is proportional to the squared total angular momentum as well as to the inverse of the lattice size.
基金Project partly supported by the National Natural Science Foundation of China (Grant Nos 10575119 and 10235030)
文摘This paper proposes an alternative scheme for generating cluster-type of entangled coherent states. This scheme is based on resonant interaction of a two-mode cavity with a two-level atom driven by strong classical fields. Thus the required interaction time is greatly shortened, which is very important in view of decoherence.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022)the Natural Science Foundation of Fujian Province of China (Grant Nos 2007J0002 and 2006J0230)the Foundation for Universities in Fujian Province (Grant No 2007F5041)
文摘This paper proposes a scalable scheme to generate n-atom GHZ states and cluster states by using the basic building block, i.e., a weak coherent optical pulse [α) being reflected successively from a single-atom cavity. In the schemes, coherent state of light is used instead of single photon source, homodyne measurement on coherent light is done kastead of single photon detection, and no need for individually addressing keeps the schemes easy to implement from the experimental point of view. The successful probabilities of our protocols approach unity in the ideal case.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field. After the realization of simple atomic measurements, the generation of CTESVS in four separate cavities is accomplished within the cavity decay time. In the case of large atom=cavity detuning, the scheme is immune to the effect of atomic spontaneous emission.
基金supported by the National Natural Science Foundation of China (Grant No. 60978009 )the National Basic Research Program of China (Grant Nos. 2009CB929604 and 2007CB925204)
文摘We present a scheme for the preparation of one-dimensional (1D) and two-dimensional (2D) cluster states with electrons trapped on a liquid helium surface and driven by a classical laser beam. The two lowest levels of the vertical motion of the electron act as a two-level system, and the quantized vibration of the electron along one of the parallel directions (the x direction) serves as the bosonic mode. The degrees of freedom of the vertical and parallel motions of the trapped electron can be coupled together by a classical laser field. With the proper frequency of the laser field, the cluster states can be realized.
基金Project supported by the National Natural Science Foundation of China (Grant No.10902083)the Natural Science Foundation of Shannxi Province,China (Grant No.2009JM1007)
文摘In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.
基金Project supported by the National Fundamental Research Program of China (Grant No. 2013CB921804)the National Natural Science Foundation of China(Grant No. 11004065)+1 种基金the Natural Science Foundation of Guangdong Province of China (Grant Nos. 10451063101006312 and S2011040000403)the Funds of the Education Department of Anhui Province of China (Grant Nos. KJ2010A323, 2010SQRL187, and KJ2012B075)
文摘We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state of the cavity. In particular, we have managed to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.
基金supported by the National Natural Science Foundation of China (Grant Nos.10774163 and 10804132)
文摘We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and insensitive to Lamb-Dicke parameter. Meanwhile, as it is carried out in a geometric quantum computing fashion, our scheme enables the fast and high-fidelity generation of cluster states. The experimental feasibility is discussed with sophisticated ion trap techniques.
基金National Natural Science Foundation of China under Grant No.1050402
文摘We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantumelectrodynamics (QED) system.The process is achieved via adiabatic evolution of dark states,which only requiresadiabatically increasing or decreasing Rabi frequencies of laser.Thus it allows the robust implementation of entanglementagainst certain types of errors.Our scheme is relatively decoherence-free in the sense that excited atomic states are neverpopulated and excited cavity photon states can be made negligible in certain conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10774108 and 11074184
文摘In this paper, we propose an optical scheme to generate four-mode cluster-type entangled coherent states (ECSs) in free traveling optical fields by using two single-photon sources, coherent state sources, beam splitters, pho- todetectors, cross-Kerr media, and phase shifters. And the success probability of the states preparation is calculated. At last we discuss the experimental feasibility of such proposal.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for generating cluster states via Raman interaction is proposed. In the scheme, we firstly prepare cluster states of multi-cavities with information encoded in the coherent states and then generate cluster states of multiatoms, which encode the information in the ground states of A-type atoms. The advantages of our scheme are that the atomic spontaneous radiation can be efficiently reduced since the cavity frequency is largely detuned from the atomic transition frequency and the Hadamard gate operation of the coherent states is replaced by measuring the coherent states.