This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth...A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So ...Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So the Hamiltonian system can also be applied to plate bending problems by introducing bending moment functions. The new method presents the analytical solution for the circular sector plate. The results show that the new method is effective.展开更多
This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite...This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.展开更多
Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using ...Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e...The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.展开更多
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
In this paper, ihe probleins of nonlinear unsymmeirucal bending for cylindricallyorthotropic circular plale are sludied by using “ the method of two-variabie” ̄[1], and theuniformly valid asympiotic soluiions of Nth...In this paper, ihe probleins of nonlinear unsymmeirucal bending for cylindricallyorthotropic circular plale are sludied by using “ the method of two-variabie” ̄[1], and theuniformly valid asympiotic soluiions of Nth-order .lor ε_1 and Mth-order for ε_2 areobiained展开更多
In this paper, an approach is proposed for taking calculations of high order differentials of scaling functions in wavelet theory in order to apply the wavelet Galerkin FEM to numerical analysis of those boundary-valu...In this paper, an approach is proposed for taking calculations of high order differentials of scaling functions in wavelet theory in order to apply the wavelet Galerkin FEM to numerical analysis of those boundary-value problems with order higher than 2. After that, it is realized that the wavelet Galerkin FEM is used to solve mechanical problems such as bending of beams and plates. The numerical results show that this method has good precision.展开更多
The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element...The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.展开更多
The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasterna...The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak's model or Winkler's model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.展开更多
In this paper, using of the superposition principle. the bending solution ofrectangular plate with one edge built-in and one corner point supported subjected touniform load is derived. The results indicate the method ...In this paper, using of the superposition principle. the bending solution ofrectangular plate with one edge built-in and one corner point supported subjected touniform load is derived. The results indicate the method has the advantages of rabidconvergence and high precision.展开更多
The mechanical background of the bivariate spline space of degree 2 and smoothness 1 on rectangular partition is presented constructively. Making use of mechanical analysis method, by acting couples along the interior...The mechanical background of the bivariate spline space of degree 2 and smoothness 1 on rectangular partition is presented constructively. Making use of mechanical analysis method, by acting couples along the interior edges with suitable evaluations, the deflection surface is divided into piecewise form, therefore, the relation between a class of bivariate splines on rectangular partition and the pure bending of thin plate is established. In addition, the interpretation of smoothing cofactor and conformality condition from the mechanical point of view is given. Furthermore, by introducing twisting moments, the mechanical background of any spline belong to the above space is set up.展开更多
This paper presents a new method exactly to solve the bending of elastic thinplates with arbitrary shape. First the analytic solution of differential equation ofelastic thin plate is derived in polar coordinate, then ...This paper presents a new method exactly to solve the bending of elastic thinplates with arbitrary shape. First the analytic solution of differential equation ofelastic thin plate is derived in polar coordinate, then the analytic solution is substituted into the boundary conditions of elastic thin plate with arbitrary shape. The boundaryequations are expanded along the boundary by the use of Fourier series, all unknown coefficients can be decided. The results are exact.展开更多
In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesse...In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.展开更多
In this paper,under the non-uniformtransverse load,the problems of nonlinear bending for orthotropic rectangular plate are studied by using'the method of twovariable'[1]and 'the method of mixing perturba...In this paper,under the non-uniformtransverse load,the problems of nonlinear bending for orthotropic rectangular plate are studied by using'the method of twovariable'[1]and 'the method of mixing perturbation'[2].The uniformly valid asymptotic solutions of Nth-order for ε1 and Mth-order for ε2 for ortholropic rectangular plale with four clamped edges are oblained.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak e...Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金Project supported by the National Natural Science Foundation of China(No.11925204)the 111 Project(No.B14044)。
文摘A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金National Natural Science Foundation(No.19732020)the Doctoral Research Foundation of China
文摘Instead of the biharmonic type equation, a set of new governing equations and solving method for circular sector plate bending is presented based on the analogy between plate bending and plane elasticity problems. So the Hamiltonian system can also be applied to plate bending problems by introducing bending moment functions. The new method presents the analytical solution for the circular sector plate. The results show that the new method is effective.
基金supported by the National Natural Science Foundation of China(Grant No 10562002)the Natural Science Foundation of Inner Mongolia,China(Grants No 200508010103 and 200711020106)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070126002)
文摘This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.
基金Project supported by the National Natural Science Foundation of China (No.10432030).
文摘Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002
文摘The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
文摘In this paper, ihe probleins of nonlinear unsymmeirucal bending for cylindricallyorthotropic circular plale are sludied by using “ the method of two-variabie” ̄[1], and theuniformly valid asympiotic soluiions of Nth-order .lor ε_1 and Mth-order for ε_2 areobiained
文摘In this paper, an approach is proposed for taking calculations of high order differentials of scaling functions in wavelet theory in order to apply the wavelet Galerkin FEM to numerical analysis of those boundary-value problems with order higher than 2. After that, it is realized that the wavelet Galerkin FEM is used to solve mechanical problems such as bending of beams and plates. The numerical results show that this method has good precision.
基金supported by National Natural Science Foundation of China (Grant No. 50775044, Grant No. 50975050)Guangdong Provincial and Ministry of Education Industry-University-Research Integration Project of China (Grant No. 2009B090300044)
文摘The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.
文摘The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak's model or Winkler's model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.
文摘In this paper, using of the superposition principle. the bending solution ofrectangular plate with one edge built-in and one corner point supported subjected touniform load is derived. The results indicate the method has the advantages of rabidconvergence and high precision.
基金Project supported by the National Natural Science Foundation of China(Nos.60533060,69973010 and 10271022)
文摘The mechanical background of the bivariate spline space of degree 2 and smoothness 1 on rectangular partition is presented constructively. Making use of mechanical analysis method, by acting couples along the interior edges with suitable evaluations, the deflection surface is divided into piecewise form, therefore, the relation between a class of bivariate splines on rectangular partition and the pure bending of thin plate is established. In addition, the interpretation of smoothing cofactor and conformality condition from the mechanical point of view is given. Furthermore, by introducing twisting moments, the mechanical background of any spline belong to the above space is set up.
文摘This paper presents a new method exactly to solve the bending of elastic thinplates with arbitrary shape. First the analytic solution of differential equation ofelastic thin plate is derived in polar coordinate, then the analytic solution is substituted into the boundary conditions of elastic thin plate with arbitrary shape. The boundaryequations are expanded along the boundary by the use of Fourier series, all unknown coefficients can be decided. The results are exact.
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(zzyjkt2013-06B)supported by the State Key Laboratory of High Performance Complex Manufacturing(Central South University),China
文摘In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.
文摘In this paper,under the non-uniformtransverse load,the problems of nonlinear bending for orthotropic rectangular plate are studied by using'the method of twovariable'[1]and 'the method of mixing perturbation'[2].The uniformly valid asymptotic solutions of Nth-order for ε1 and Mth-order for ε2 for ortholropic rectangular plale with four clamped edges are oblained.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
基金Project supported by the National Natural Science Foundation of China(Nos.11872257 and 11572358)the German Research Foundation(No.ZH 15/14-1)。
文摘Based on the nonlocal theory and Mindlin plate theory,the governing equations(i.e.,a system of partial differential equations(PDEs)for bending problem)of magnetoelectroelastic(MEE)nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle.The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions(MPS)to solve the governing equations numerically.It is confirmed that for the present bending model,the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points.The effects of different boundary conditions,applied loads,and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method.Some important conclusions are drawn,which should be helpful for the design and applications of electromagnetic nanoplate structures.