An experimental Paschen test setup has been established to analyze the quality of ITER current lead (CL) insulation and extend the research on Paschen's law under various conditions. Insulation problems can destroy...An experimental Paschen test setup has been established to analyze the quality of ITER current lead (CL) insulation and extend the research on Paschen's law under various conditions. Insulation problems can destroy a machine if a Paschen discharge is triggered by an insulation defect that is caused by faulty manufacturing, electromagnetic force, and thermal stress load with a certain degree of vacuum helium or pipe leakage. The results show that the CL insulation mock-up worked well under normal temperature and pressure. Besides, the mock-up also worked well in helium conditions and at 80 K temperature at different pressures. One area of CL insulation was severely destroyed when the 80 K test was conducted after 5 thermal cycles, resulting in Paschen discharge phenomenon. The breakdown voltage is maintained at a relatively low level under different pressure conditions; the change of breakdown voltage was mainly due to the change of pressure, and such change was in line with the Paschen law.展开更多
Objective:The objective of this article is to investigate the competence of Central Sterile Supply Department(CSSD)staff in insulation testing on electrosurgical instruments,to analyze the needs of training for CSSD s...Objective:The objective of this article is to investigate the competence of Central Sterile Supply Department(CSSD)staff in insulation testing on electrosurgical instruments,to analyze the needs of training for CSSD staff,and also to strengthen the effectiveness of monitoring the insulation testing on electrosurgical instruments for CSSD staff to provide a reference for the nursing safety training.Materials and Methods:A total of 180 CSSD staff from 36 hospitals were enrolled as the research objects and investigated using“self‑assessment questionnaire of the competence in insulation testing on electrosurgical instruments and the needs of training".Results:The overall self‑assessment score of competence in insulation testing on electrosurgical instruments for CSSD staff is 3.10±0.42,including four dimensions which are attitude,system,cognition,and skills with the scores 3.31±0.55,2.80±0.63,2.74±0.68,and 3.03±0.36,respectively.Based on the survey of training needs for CSSD staff,the top three ranked training needs are trace management record of insulation testing on electrosurgical instruments(93.89%),disposal procedures for insulation damage of electrosurgical instruments(92.78%),and adverse events caused by leakage of electrosurgical instruments(80.55%).Conclusion:The competence of insulation testing for CSSD staff is at a low level by overall.The competence of CSSD staff could be improved by analyzing the needs of training,establishing a systematic training system,and taking effective training action,thus ensuring the safety of patients and medical personnel.展开更多
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun...The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments.展开更多
A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to fur...A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to further diagnose and locate the potential problem of the cable system. This paper presents the experience of the present authors carrying out the cable test. Following a brief introduction to the experiment equipments and physical connections, the paper analyses the data collected from the testing, including PD pulse shape analysis, frequency spectrum analysis and phase resolved PD pattern analysis. Associated with PD propagation direction identification, PD source diagnosis and localisation was made. Four different types of sensors, which were adapted during the testing, are shown to have different frequency bandwidths and performed differently. Aider comparing the parameters of the sensor and the PD signals detected by individual sensor, optimal PD monitoring bandwidth for cable system is suggested.展开更多
The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation o...The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.展开更多
Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,...Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.展开更多
In this work,experimental and theoretical studies were carried out on arc-induced bubble dynamic behaviors in insulation oil.Direct experimental evidence indicated that the arc-induced bubble experiences pulsating gro...In this work,experimental and theoretical studies were carried out on arc-induced bubble dynamic behaviors in insulation oil.Direct experimental evidence indicated that the arc-induced bubble experiences pulsating growth rather than a continuous expansion.Furthermore,a theoretical model and numerical calculation method were proposed,which revealed the dynamic mechanism of bubble growth.Good agreement between the theoretical results and experimental observations verified the general correctness and feasibility of the proposed method.展开更多
The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the I...The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the IBs during the 20 year lifespan of ITER devices, tensile and compressive fatigue tests were conducted by simulating actual working conditions and optimizing the test programs. The IBs were evaluated by testing their helium tightness after mechanical fatigue tests. In addition, fatigue analysis was performed using ANSYS software and an experi-mental S-N curve. The test data showed that the maximum helium leakage rate was less than 1.0×10^-9 Pc· m^3/s, which met the design requirements of the ITER IBs. ANSYS analysis results are also consistent with the test results from the theoretical viewpoint.展开更多
Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging st...Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state.展开更多
Parallel key-insulation allows the use of multiple helper keys to protect private decryption keys during secret decryption key updates. This approach prevents decryption key leakage or exposure in insecure environment...Parallel key-insulation allows the use of multiple helper keys to protect private decryption keys during secret decryption key updates. This approach prevents decryption key leakage or exposure in insecure environment. We combined parallel key-insulated encryption (PKIE) with multiple helper keys and identity-based encryption with the equality test (IBE-ET) to obtain parallel key insulated ID-based public key encryption with outsourced equivalent test (PKI-IBPKE-ET). The scheme inherits the advantages of identity-based encryption (IBE), which simplifies certificate management for public key encryption. Furthermore, the parallel key-insulation with multiple helper mechanism was introduced in our scheme, which perfectly reduced the possibility of helper key exposure. Our scheme will enable the protection and periodic update of decryption keys in insecure environment. Our scheme achieves a weak indistinguishable identity chosen ciphertext (W-IND-ID-CCA) security in the random oracle model. Ultimately, it is observed that our scheme is feasible and practical through the experimental simulation and theoretical analysis.展开更多
基金supported by ITER IO, the National "973" Program of China (No. 2007ID2006)the National ITER Special Support for R&D on Science and Technology for ITER, CN Schedule Task (No. 2008GB102000)
文摘An experimental Paschen test setup has been established to analyze the quality of ITER current lead (CL) insulation and extend the research on Paschen's law under various conditions. Insulation problems can destroy a machine if a Paschen discharge is triggered by an insulation defect that is caused by faulty manufacturing, electromagnetic force, and thermal stress load with a certain degree of vacuum helium or pipe leakage. The results show that the CL insulation mock-up worked well under normal temperature and pressure. Besides, the mock-up also worked well in helium conditions and at 80 K temperature at different pressures. One area of CL insulation was severely destroyed when the 80 K test was conducted after 5 thermal cycles, resulting in Paschen discharge phenomenon. The breakdown voltage is maintained at a relatively low level under different pressure conditions; the change of breakdown voltage was mainly due to the change of pressure, and such change was in line with the Paschen law.
文摘Objective:The objective of this article is to investigate the competence of Central Sterile Supply Department(CSSD)staff in insulation testing on electrosurgical instruments,to analyze the needs of training for CSSD staff,and also to strengthen the effectiveness of monitoring the insulation testing on electrosurgical instruments for CSSD staff to provide a reference for the nursing safety training.Materials and Methods:A total of 180 CSSD staff from 36 hospitals were enrolled as the research objects and investigated using“self‑assessment questionnaire of the competence in insulation testing on electrosurgical instruments and the needs of training".Results:The overall self‑assessment score of competence in insulation testing on electrosurgical instruments for CSSD staff is 3.10±0.42,including four dimensions which are attitude,system,cognition,and skills with the scores 3.31±0.55,2.80±0.63,2.74±0.68,and 3.03±0.36,respectively.Based on the survey of training needs for CSSD staff,the top three ranked training needs are trace management record of insulation testing on electrosurgical instruments(93.89%),disposal procedures for insulation damage of electrosurgical instruments(92.78%),and adverse events caused by leakage of electrosurgical instruments(80.55%).Conclusion:The competence of insulation testing for CSSD staff is at a low level by overall.The competence of CSSD staff could be improved by analyzing the needs of training,establishing a systematic training system,and taking effective training action,thus ensuring the safety of patients and medical personnel.
文摘The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments.
文摘A cable circuit of a substation in the United Kingdom showed high level of PD activities during a survey using hand hold PD testing equipment. The authors were invited to carry out on-site PD testing experiment to further diagnose and locate the potential problem of the cable system. This paper presents the experience of the present authors carrying out the cable test. Following a brief introduction to the experiment equipments and physical connections, the paper analyses the data collected from the testing, including PD pulse shape analysis, frequency spectrum analysis and phase resolved PD pattern analysis. Associated with PD propagation direction identification, PD source diagnosis and localisation was made. Four different types of sensors, which were adapted during the testing, are shown to have different frequency bandwidths and performed differently. Aider comparing the parameters of the sensor and the PD signals detected by individual sensor, optimal PD monitoring bandwidth for cable system is suggested.
文摘The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050487017)
文摘Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.
基金supported by National Natural Science Foundation of China(No.51807151)。
文摘In this work,experimental and theoretical studies were carried out on arc-induced bubble dynamic behaviors in insulation oil.Direct experimental evidence indicated that the arc-induced bubble experiences pulsating growth rather than a continuous expansion.Furthermore,a theoretical model and numerical calculation method were proposed,which revealed the dynamic mechanism of bubble growth.Good agreement between the theoretical results and experimental observations verified the general correctness and feasibility of the proposed method.
基金supported by the Tokomak Design Division Center, Institute of Plasma Physics, Chinese Academy of Sciences
文摘The composite axial insulation breaks (IBs) are key components of the supercon- ducting magnet system for the international thermonuclear experimental reactor (ITER). In order to ensure the safe operation of the IBs during the 20 year lifespan of ITER devices, tensile and compressive fatigue tests were conducted by simulating actual working conditions and optimizing the test programs. The IBs were evaluated by testing their helium tightness after mechanical fatigue tests. In addition, fatigue analysis was performed using ANSYS software and an experi-mental S-N curve. The test data showed that the maximum helium leakage rate was less than 1.0×10^-9 Pc· m^3/s, which met the design requirements of the ITER IBs. ANSYS analysis results are also consistent with the test results from the theoretical viewpoint.
基金Project supported by National Natural Science Foundation of China(51277117), Shang- hai Science and Technology Comrmssion(11 DZ2283000).
文摘Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state.
文摘Parallel key-insulation allows the use of multiple helper keys to protect private decryption keys during secret decryption key updates. This approach prevents decryption key leakage or exposure in insecure environment. We combined parallel key-insulated encryption (PKIE) with multiple helper keys and identity-based encryption with the equality test (IBE-ET) to obtain parallel key insulated ID-based public key encryption with outsourced equivalent test (PKI-IBPKE-ET). The scheme inherits the advantages of identity-based encryption (IBE), which simplifies certificate management for public key encryption. Furthermore, the parallel key-insulation with multiple helper mechanism was introduced in our scheme, which perfectly reduced the possibility of helper key exposure. Our scheme will enable the protection and periodic update of decryption keys in insecure environment. Our scheme achieves a weak indistinguishable identity chosen ciphertext (W-IND-ID-CCA) security in the random oracle model. Ultimately, it is observed that our scheme is feasible and practical through the experimental simulation and theoretical analysis.