The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over ...This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over a driving cycle.Influence of design parameters including tooth width,slot depth,split ratio(the ratio of inner diameter to outer diameter of the stator),and V-type magnet angle on the energy consumption of the motors and driving range of electric vehicles over a driving cycle is investigated in detail.The investigation is carried out for two typical driving cycles with different characteristics to represent different conditions:One is high-speed,low-torque cycle-Highway Fuel Economy Test and the other is low-speed,high-torque cycle-Artemis Urban Driving Cycle.It shows that for both driving cycles,the same parameters may have different influence on the energy consumption of the motors,as well as driving range of electric vehicles.展开更多
Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),thi...Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.展开更多
Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permane...Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.展开更多
The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figur...The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figured out under the condition of satisfying adequate steering performance of the tracked vehicles.General opinions on the two projects are brought forward and conclusions are drawn.展开更多
Aim Toshorten integral design period of electric vehicles Methods The electric vehicle simulation program(EVSP), a modular user-friendly program which is written in Borland C++ OWL for Windows was developed. Results ...Aim Toshorten integral design period of electric vehicles Methods The electric vehicle simulation program(EVSP), a modular user-friendly program which is written in Borland C++ OWL for Windows was developed. Results EVSP allows simulating the dynamic and the economy performance of electric vehicles.EVSP provides many kinds of data input module,a large components library of electric vehicles and several kinds of speed cycle with these library,it is easily to develop a new concept of different drive trains or even to compare or improve the existing electric vehicles. The paper simulated the performance of YW6120DD Electric Bus, and analyzed the test results comparing with simulation results Conclusion The simulation results indicate that the EVSP may contribute to the developments of electric vehicles in general and the definition of the optimal match management in the drive train in particular.展开更多
In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control ...In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri...Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.展开更多
The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was prop...The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.展开更多
In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was des...In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.展开更多
Reducing energy consumption has become a matter of increasing concern for electric vehicle owners. EcoDriver is a project funded by the European Commission, searching for new eco-driving solutions for reducing energy ...Reducing energy consumption has become a matter of increasing concern for electric vehicle owners. EcoDriver is a project funded by the European Commission, searching for new eco-driving solutions for reducing energy consumption in private and public transport. EcoDriver’s main purpose is to teach efficient driving strategies and facilitate drivers’ decision-making processes through several feedback modalities, in order to help increase driving efficiency and therefore reduce energy consumption. In the present study, the Full ecoDriver System combined with a haptic feedback gas pedal was tested in real driving conditions to give answers to some questions about its effectiveness, efficiency, workload and acceptability in an electric vehicle. The sample profile was composed by thirty young but experienced drivers. They had to drive around an open road track which allowed several possible scenarios such as curves, intersection or roundabout, speed limit changes and preceding vehicles. Average speed was registered on each lap, likewise other subjective measurements. The main results suggest that the efficiency benefits achieved while driving depend on the event type and the feedback modality provided. For instance haptic feedback seems to be especially indicated for roundabouts. In addition, the visual feedback provided by the FeDS nomadic device helps to save energy and learn eco-driving strategies. These outcomes indicate how several feedback modalities could facilitate the decision making process, changing driving behaviour, reducing energy consumption and increasing safety. These questions would help advance further research on eco-driving Intelligent Transport Systems and driving behaviour issues.展开更多
Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control s...Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.展开更多
A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the ...A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the architecture of the transmission system,we propose vehicle performance parameters and performance indexes of a pure electric vehicle,a time-sharing driving strategy of dual motors.First,the parameters of the battery,motor,and transmission system are matched.Then,the electric vehicle transmission model is built in Amesim and the control strategy is designed in Simulink.With the optimization goal of improving the vehicle’s dynamic performance and driving range,the optimal parameters are determined through analysis.Finally,the characteristics of the motor are tested on the bench.The results show that the energy-saving potential of the timesharing driven double motor is higher,and the driving mileage of the double motor drive is increased by 4%.展开更多
In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in ...In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.展开更多
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into batter...Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.展开更多
A cloud computing based optimal driving method is proposed and its feasibility is validated through a real-world scenario simulation.Based on principles of vehicle dynamics,the driving optimization problem has been fo...A cloud computing based optimal driving method is proposed and its feasibility is validated through a real-world scenario simulation.Based on principles of vehicle dynamics,the driving optimization problem has been formulated into an optimal control problem constrained by traffic rules,directed at achieving lower equivalent fuel consumption and shorter travel time.In order to conveniently specify the constraints and facilitate the application of the dynamic programming(DP)algorithm,the driving optimization problem is transformed into spatial domain and discretized properly.Considering the heavy computational costs of the DP algorithm,a cloud computing based platform structure is proposed to solve the optimal driving problem in real-time.A case study is simulated based on a real-world traffic scenario in Matlab.Simulation results demonstrate that the cloud computing framework is promising toward realizing the real-time energy management for hybrid electric vehicles.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test ...The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.展开更多
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金This work was supported by the National Natural Science Foundation of China under Grant 51677169 and Grant 51637009.
文摘This paper presents parametric analysis of driving range of electric vehicles driven by V-type interior permanent magnet motors aiming at maximum driving range,i.e.,minimal total energy consumption of the motors over a driving cycle.Influence of design parameters including tooth width,slot depth,split ratio(the ratio of inner diameter to outer diameter of the stator),and V-type magnet angle on the energy consumption of the motors and driving range of electric vehicles over a driving cycle is investigated in detail.The investigation is carried out for two typical driving cycles with different characteristics to represent different conditions:One is high-speed,low-torque cycle-Highway Fuel Economy Test and the other is low-speed,high-torque cycle-Artemis Urban Driving Cycle.It shows that for both driving cycles,the same parameters may have different influence on the energy consumption of the motors,as well as driving range of electric vehicles.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181)。
文摘Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.
文摘Aimed at the requirements for electric transmission system of a military tracked vehicle, the motor's design indexes were analysed and calculated. A model based on saturate inductance parameter of interior permanent magnet (IPM) synchronous motor was brought forward by using finite element analysis. And its control strategy based on the largest running capability was studied also. The experiment results for a scale model show that the modelling method improves the model's accuracy, and the motor's control strategy is effective.
文摘The electric drive system characteristics of different projects for tracked vehicles are analyzed.For the two most typical projects,the parameters of power,torque and rotating speed and others of drive motor are figured out under the condition of satisfying adequate steering performance of the tracked vehicles.General opinions on the two projects are brought forward and conclusions are drawn.
文摘Aim Toshorten integral design period of electric vehicles Methods The electric vehicle simulation program(EVSP), a modular user-friendly program which is written in Borland C++ OWL for Windows was developed. Results EVSP allows simulating the dynamic and the economy performance of electric vehicles.EVSP provides many kinds of data input module,a large components library of electric vehicles and several kinds of speed cycle with these library,it is easily to develop a new concept of different drive trains or even to compare or improve the existing electric vehicles. The paper simulated the performance of YW6120DD Electric Bus, and analyzed the test results comparing with simulation results Conclusion The simulation results indicate that the EVSP may contribute to the developments of electric vehicles in general and the definition of the optimal match management in the drive train in particular.
基金supported by the National Nature Science Foundation(U1664263)National Key R&D Program of China(2016YFB0101102)。
文摘In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
文摘Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.
基金Supported by the National Natural Science Foundation of China(51475045)
文摘The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.
文摘In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.
文摘Reducing energy consumption has become a matter of increasing concern for electric vehicle owners. EcoDriver is a project funded by the European Commission, searching for new eco-driving solutions for reducing energy consumption in private and public transport. EcoDriver’s main purpose is to teach efficient driving strategies and facilitate drivers’ decision-making processes through several feedback modalities, in order to help increase driving efficiency and therefore reduce energy consumption. In the present study, the Full ecoDriver System combined with a haptic feedback gas pedal was tested in real driving conditions to give answers to some questions about its effectiveness, efficiency, workload and acceptability in an electric vehicle. The sample profile was composed by thirty young but experienced drivers. They had to drive around an open road track which allowed several possible scenarios such as curves, intersection or roundabout, speed limit changes and preceding vehicles. Average speed was registered on each lap, likewise other subjective measurements. The main results suggest that the efficiency benefits achieved while driving depend on the event type and the feedback modality provided. For instance haptic feedback seems to be especially indicated for roundabouts. In addition, the visual feedback provided by the FeDS nomadic device helps to save energy and learn eco-driving strategies. These outcomes indicate how several feedback modalities could facilitate the decision making process, changing driving behaviour, reducing energy consumption and increasing safety. These questions would help advance further research on eco-driving Intelligent Transport Systems and driving behaviour issues.
基金Supported by National Natural Science Foundation of China(Grant Nos.51905329,51975118)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20181112).
文摘Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.
基金Supported by Beijing Institute of Technology Research Fund Program for Young Scholars(3030011181911)the National Natural Science Foundation of China(520020025)。
文摘A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the architecture of the transmission system,we propose vehicle performance parameters and performance indexes of a pure electric vehicle,a time-sharing driving strategy of dual motors.First,the parameters of the battery,motor,and transmission system are matched.Then,the electric vehicle transmission model is built in Amesim and the control strategy is designed in Simulink.With the optimization goal of improving the vehicle’s dynamic performance and driving range,the optimal parameters are determined through analysis.Finally,the characteristics of the motor are tested on the bench.The results show that the energy-saving potential of the timesharing driven double motor is higher,and the driving mileage of the double motor drive is increased by 4%.
文摘In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.
基金Project(JS-102)supported by the National Key Science and Technological Program of China for Electric VehiclesProject supported by Jilin University "985 Project" Engineering Bionic Technology Innovation Platform,China
文摘Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.
基金Supported by the National Nature Science Foundation of China(5177503951861135301)
文摘A cloud computing based optimal driving method is proposed and its feasibility is validated through a real-world scenario simulation.Based on principles of vehicle dynamics,the driving optimization problem has been formulated into an optimal control problem constrained by traffic rules,directed at achieving lower equivalent fuel consumption and shorter travel time.In order to conveniently specify the constraints and facilitate the application of the dynamic programming(DP)algorithm,the driving optimization problem is transformed into spatial domain and discretized properly.Considering the heavy computational costs of the DP algorithm,a cloud computing based platform structure is proposed to solve the optimal driving problem in real-time.A case study is simulated based on a real-world traffic scenario in Matlab.Simulation results demonstrate that the cloud computing framework is promising toward realizing the real-time energy management for hybrid electric vehicles.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA05A109,2008AA11A104)International S&T Cooperation Program of China(ISTCP)(No.2011DFA70570,2010DFA72760)
文摘The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method.