In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a si...In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.展开更多
This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide...This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.展开更多
This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz s...This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.展开更多
In this paper,we propose an innovative chaotic system,combining fractional derivative and sinehyperbolic nonlinearity with circuit execution.The study of this system is conducted via an analog circuit simulator,using ...In this paper,we propose an innovative chaotic system,combining fractional derivative and sinehyperbolic nonlinearity with circuit execution.The study of this system is conducted via an analog circuit simulator,using two anti-parallel semiconductor diodes to provide hyperbolic sine nonlinearity,and to function as operational amplifiers.The multi-stability of the system is also enhanced with the help of multi-equilibrium points for distinct real orders of system.The system explores the generation of a four-wing attractor in different phases,both numerically and electronically.By changing the input parameters of the system,different graphs are generated for current flow in state,phase,and space,to confirm the precision of the fractional order derivatives.A reasonable simulation shows that the deliberate circuit provides effective chaos in terms of speed and accuracy,which is comensurate with the numerical simulation.This nonlinear chaotic behavior is utilized to encrypt sound(.wav),images(.jpg),and animated(.gif)data which are a major requirement for the security of communication systems.The proposed circuit performs chaos and cryptographic tasks with high-effective analog computation,and constitutes a novel approach to this area of research.展开更多
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter va...In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.展开更多
The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas a...The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets ...In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets and global attractor.展开更多
The initial-boundary value problem of the propagation of nonlinear longitudinal elastic waves in an initially strained rod is considered. The rod is assumed to interact with the surrouding elastic and viscous external...The initial-boundary value problem of the propagation of nonlinear longitudinal elastic waves in an initially strained rod is considered. The rod is assumed to interact with the surrouding elastic and viscous external medium. The long time behavior of solutions are derived and global attractors in E-1 space is obtained.展开更多
In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Mira...In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.展开更多
This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing an...This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.展开更多
Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are...Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.展开更多
This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of e...This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.展开更多
In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller desig...In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.展开更多
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded doma...In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).展开更多
A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition beha...A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.展开更多
In this paper, the global existence of classical solution and global attractor for Camassa-Holm type equations with dissipative term are established by using fixed point theorem and a priori estimates.
A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference sche...A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.展开更多
In this paper, the existence of global attractors for the 2D autonomous g- Navier-Stokes equations on multi-connected bounded domains is investigated under the general assumptions of boundaries. The estimation of the ...In this paper, the existence of global attractors for the 2D autonomous g- Navier-Stokes equations on multi-connected bounded domains is investigated under the general assumptions of boundaries. The estimation of the Hausdorff dimensions for global attractors is given.展开更多
文摘In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 60774088 and 10772135)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin,China (Grant Nos 07JCZDJC09600,08JCZDJC21900 and 08JCZDJC18600)the Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems of China
文摘This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.
文摘This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
文摘In this paper,we propose an innovative chaotic system,combining fractional derivative and sinehyperbolic nonlinearity with circuit execution.The study of this system is conducted via an analog circuit simulator,using two anti-parallel semiconductor diodes to provide hyperbolic sine nonlinearity,and to function as operational amplifiers.The multi-stability of the system is also enhanced with the help of multi-equilibrium points for distinct real orders of system.The system explores the generation of a four-wing attractor in different phases,both numerically and electronically.By changing the input parameters of the system,different graphs are generated for current flow in state,phase,and space,to confirm the precision of the fractional order derivatives.A reasonable simulation shows that the deliberate circuit provides effective chaos in terms of speed and accuracy,which is comensurate with the numerical simulation.This nonlinear chaotic behavior is utilized to encrypt sound(.wav),images(.jpg),and animated(.gif)data which are a major requirement for the security of communication systems.The proposed circuit performs chaos and cryptographic tasks with high-effective analog computation,and constitutes a novel approach to this area of research.
基金supported by the National Natural Science Foundation of China(Grant Nos.10772135 and 60874028)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11202148)+2 种基金the Incentive Funding of the National Research Foundation of South Africa(GrantNo.IFR2009090800049)the Eskom Tertiary Education Support Programme of South Africathe Research Foundation of Tianjin University of Science and Technology
文摘In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.
文摘The Sloane Digital Sky Survey (SDSS) has been in the process of creating a 3D digital map of the Universe, since 2000AD. However, it has not been able to map that portion of the sky which is occluded by the dust gas and stars of our own Milkyway Galaxy. This research builds on work from a previous paper that sought to impute this missing galactic information using Inpainting, polar transforms and Linear Regression ANNs. In that paper, the author only attempted to impute the data in the Northern hemisphere using the ANN model, which subsequently confirmed the existence of the Great Attractor and the homogeneity of the Universe. In this paper, the author has imputed the Southern Hemisphere and discovered a region that is mostly devoid of stars. Since this area appears to be the counterpart to the Great Attractor, the author refers to it as the Great Repeller and postulates that it is an area of physical repulsion, inline with the work of GerdPommerenke and others. Finally, the paper investigates large scale structures in the imputed galaxies.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
文摘In this paper, we consider a reaction diffusion system with Hamitonian structure, we first prove the existence of an invariant region for system and the continuity of the semigroup, then establish the absorbing sets and global attractor.
基金National Natural Science Foundation of China!(No:19861004)
文摘The initial-boundary value problem of the propagation of nonlinear longitudinal elastic waves in an initially strained rod is considered. The rod is assumed to interact with the surrouding elastic and viscous external medium. The long time behavior of solutions are derived and global attractors in E-1 space is obtained.
基金supported by NSFC Grant (11031003)the Fundamental Research Funds for the Central Universities+1 种基金support by Fund of excellent young teachers in Shanghai (shgcjs008)Initial Fund of SUES (A-0501-11-016)
文摘In this article, we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory. For this purpose, we will apply the method presented by Chepyzhov and Miranville [7, 8], in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.
基金Sponsored by the National NSF (10901121, 10826091,10771074, and 10771139)NSF for Postdoctors in China (20090460952)+3 种基金NSF of Zhejiang Province (Y6080077)NSF of Guangdong Province (004020077)NSF of Wenzhou University (2008YYLQ01)Zhejiang youthteacher training project and Wenzhou 551 project
文摘This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275053)
文摘Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-ll, period-6, chaotic band-12 and band-6 attractors. They are induced by dif- ferent mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically.
基金Sponsored by the NSFC (10901121,10826091 and 10771139)NSF for Postdoctors of China (20090460952)+2 种基金NSF of Zhejiang Province (Y6080077)NSF of Wenzhou University (2008YYLQ01)by the Zhejiang Youth Teacher Training Project and Wenzhou 551 Project
文摘This paper is joint with [27]. The authors prove in this article the existence and reveal its structure of uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with a new class of external forces.
基金supported by the NSF of China(11031003, 10871040)
文摘In this paper, we prove the existence of the pullback attractor for the nonautonomous Benjamin-Bona-Mahony equations in H2 by establishing the pullback uniformly asymptotical compactness.
基金Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Natural Science Foundation of Zhejiang Province (Grant Nos M603217 and Y104414).
文摘In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.
文摘In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
基金supported by the National Natural Science Foundation of China(Grant No.51277017)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2012583)the Fundamental Research Funds for the Central Universities of China(Grant No.NS2014038)
文摘A simple four-dimensional system with only one control parameter is proposed in this paper. The novel system has a line or no equilibrium for the global control parameter and exhibits complex transient transition behaviors of hyperchaotic attractors, periodic orbits, and unstable sinks. Especially, for the nonzero-valued control parameter, there exists no equilibrium in the proposed system, leading to the formation of various hidden attractors with complex transient dynamics. The research results indicate that the dynamics of the system shows weak chaotic robustness and depends greatly on the initial states.
文摘In this paper, the global existence of classical solution and global attractor for Camassa-Holm type equations with dissipative term are established by using fixed point theorem and a priori estimates.
基金Supported by the National Natural Science Foundation of China(10371077)
文摘A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
基金Project supported by the National Natural Science Fundation of China (No. 11171269)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2012JM1012)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 12JK0849)
文摘In this paper, the existence of global attractors for the 2D autonomous g- Navier-Stokes equations on multi-connected bounded domains is investigated under the general assumptions of boundaries. The estimation of the Hausdorff dimensions for global attractors is given.