Minimum quadratic distance (MQD) methods are used to construct chi-square test statistics for simple and composite hypothesis for parametric families of copulas. The methods aim at grouped data which form a contingenc...Minimum quadratic distance (MQD) methods are used to construct chi-square test statistics for simple and composite hypothesis for parametric families of copulas. The methods aim at grouped data which form a contingency table but by defining a rule to group the data using Quasi-Monte Carlo numbers and two marginal empirical quantiles, the methods can be extended to handle complete data. The rule implicitly defines points on the nonnegative quadrant to form quadratic distances and the similarities of the rule with the use of random cells for classical minimum chi-square methods are indicated. The methods are relatively simple to implement and might be useful for applied works in various fields such as actuarial science.展开更多
Quadratic distance methods based on a special distance which make use of survival functions are developed for inferences for bivariate continuous models using selected points on the nonegative quadrant. A related vers...Quadratic distance methods based on a special distance which make use of survival functions are developed for inferences for bivariate continuous models using selected points on the nonegative quadrant. A related version which can be viewed as a simulated version is also developed and appears to be suitable for bivariate distributions with no closed form expressions and numerically not tractable but it is easy to simulate from these distributions. The notion of an adaptive basis is introduced and the estimators can be viewed as quasilikelihood estimators using the projected score functions on an adaptive basis and they are closely related to minimum chi-square estimators with random cells which can also be viewed as quasilikeliood estimators using a projected score functions on a special adaptive basis but the elements of such a basis were linearly dependent. A rule for selecting points on the nonnegative quadrant which make use of quasi Monte Carlo (QMC) numbers and two sample quantiles of the two marginal distributions is proposed if complete data is available and like minimum chi-square methods;the quadratic distance methods also offer chi-square statistics which appear to be useful in practice for model testing.展开更多
文摘Minimum quadratic distance (MQD) methods are used to construct chi-square test statistics for simple and composite hypothesis for parametric families of copulas. The methods aim at grouped data which form a contingency table but by defining a rule to group the data using Quasi-Monte Carlo numbers and two marginal empirical quantiles, the methods can be extended to handle complete data. The rule implicitly defines points on the nonnegative quadrant to form quadratic distances and the similarities of the rule with the use of random cells for classical minimum chi-square methods are indicated. The methods are relatively simple to implement and might be useful for applied works in various fields such as actuarial science.
文摘Quadratic distance methods based on a special distance which make use of survival functions are developed for inferences for bivariate continuous models using selected points on the nonegative quadrant. A related version which can be viewed as a simulated version is also developed and appears to be suitable for bivariate distributions with no closed form expressions and numerically not tractable but it is easy to simulate from these distributions. The notion of an adaptive basis is introduced and the estimators can be viewed as quasilikelihood estimators using the projected score functions on an adaptive basis and they are closely related to minimum chi-square estimators with random cells which can also be viewed as quasilikeliood estimators using a projected score functions on a special adaptive basis but the elements of such a basis were linearly dependent. A rule for selecting points on the nonnegative quadrant which make use of quasi Monte Carlo (QMC) numbers and two sample quantiles of the two marginal distributions is proposed if complete data is available and like minimum chi-square methods;the quadratic distance methods also offer chi-square statistics which appear to be useful in practice for model testing.