期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Adaptive Fourier Decomposition Based Time-Frequency Analysis 被引量:3
1
作者 Li-Ming Zhang 《Journal of Electronic Science and Technology》 2014年第2期201-205,共5页
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi... The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform. 展开更多
关键词 Adaptive fourier decomposition fourier transform instantaneous frequency time frequency analysis
下载PDF
A fault feature extraction method of gearbox based on compound dictionary noise reduction and optimized Fourier decomposition 被引量:1
2
作者 Mao Yifan Xu Feiyun 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期22-32,共11页
Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dict... Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dictionary noise reduction and optimized FDM(OFDM)is proposed.Firstly,the characteristics of the gear signals are used to construct a compound dictionary,and the orthogonal matching pursuit algorithm(OMP)is combined to reduce the noise of the vibration signal.Secondly,in order to overcome the mode mixing phenomenon occuring during the decomposition of FDM,a method of frequency band division based on the extremum of the spectrum is proposed to optimize the decomposition quality.Then,the OFDM is used to decompose the signal into several analytic Fourier intrinsic band functions(AFIBFs).Finally,the AFIBF with the largest correlation coefficient is selected for Hilbert envelope spectrum analysis.The fault feature frequencies of the vibration signal can be accurately extracted.The proposed method is validated through analyzing the gearbox fault simulation signal and the real vibration signals collected from an experimental gearbox. 展开更多
关键词 fourier decomposition compound dictionary mode mixing gearbox fault feature extraction
下载PDF
Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation 被引量:2
3
作者 Shuiguang TONG Zilong FU +2 位作者 Zheming TONG Junjie LI Feiyun CONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第5期404-418,共15页
Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time va... Condition monitoring and fault diagnosis of gearboxes play an important role in the maintenance of mechanical systems.The vibration signal of gearboxes is characterized by complex spectral structure and strong time variability,which brings challenges to fault feature extraction.To address this issue,a new demodulation technique,based on the Fourier decomposition method and resonance demodulation,is proposed to extract fault-related information.First,the Fourier decomposition method decomposes the vibration signal into Fourier intrinsic band functions(FIBFs)adaptively in the frequency domain.Then,the original signal is segmented into short-time vectors to construct double-row matrices and the maximum singular value ratio method is employed to estimate the resonance frequency.Then,the resonance frequency is used as a criterion to guide the selection of the most relevant FIBF for demodulation analysis.Finally,for the optimal FIBF,envelope demodulation is conducted to identify the fault characteristic frequency.The main contributions are that the proposed method describes how to obtain the resonance frequency effectively and how to select the optimal FIBF after decomposition in order to extract the fault characteristic frequency.Both numerical and experimental studies are conducted to investigate the performance of the proposed method.It is demonstrated that the proposed method can effectively demodulate the fault information from the original signal. 展开更多
关键词 fourier decomposition method Singular value ratio Resonance frequency Envelope demodulation Fault diagnosis
原文传递
Decompositions of Some Special Block Tridiagonal Matrices
4
作者 Hsin-Chu Chen 《Advances in Linear Algebra & Matrix Theory》 2021年第2期54-65,共12页
In this paper, we present a unified approach to decomposing a special class of block tridiagonal matrices <i>K</i> (<i>α</i> ,<i>β</i> ) into block diagonal matrices using similar... In this paper, we present a unified approach to decomposing a special class of block tridiagonal matrices <i>K</i> (<i>α</i> ,<i>β</i> ) into block diagonal matrices using similarity transformations. The matrices <i>K</i> (<i>α</i> ,<i>β</i> )∈ <i>R</i><sup><i>pq</i>× <i>pq</i></sup> are of the form <i>K</i> (<i>α</i> ,<i>β</i> = block-tridiag[<i>β B</i>,<i>A</i>,<i>α B</i>] for three special pairs of (<i>α</i> ,<i>β</i> ): <i>K</i> (1,1), <i>K</i> (1,2) and <i>K</i> (2,2) , where the matrices <i>A</i> and <i>B</i>, <i>A</i>, <i>B</i>∈ <i>R</i><sup><i>p</i>× <i>q</i></sup> , are general square matrices. The decomposed block diagonal matrices <img src="Edit_00717830-3b3b-4856-8ecd-a9db983fef19.png" width="15" height="15" alt="" />(<i>α</i> ,<i>β</i> ) for the three cases are all of the form: <img src="Edit_71ffcd27-6acc-4922-b5e2-f4be15b9b8dc.png" width="15" height="15" alt="" />(<i>α</i> ,<i>β</i> ) = <i>D</i><sub>1</sub> (<i>α</i> ,<i>β</i> ) ⊕ <i>D</i><sub>2</sub> (<i>α</i> ,<i>β</i> ) ⊕---⊕ <i>D</i><sub>q</sub> (<i>α</i> ,<i>β</i> ) , where <i>D<sub>k</sub></i> (<i>α</i> ,<i>β</i> ) = <i>A</i>+ 2cos ( <i>θ<sub>k</sub></i> (<i>α</i> ,<i>β</i> )) <i>B</i>, in which <i>θ<sub>k</sub></i> (<i>α</i> ,<i>β</i> ) , k = 1,2, --- q , depend on the values of <i>α</i> and <i>β</i>. Our decomposition method is closely related to the classical fast Poisson solver using Fourier analysis. Unlike the fast Poisson solver, our approach decomposes <i>K</i> (<i>α</i> ,<i>β</i> ) into <i>q</i> diagonal blocks, instead of <i>p</i> blocks. Furthermore, our proposed approach does not require matrices <i>A</i> and <i>B</i> to be symmetric and commute, and employs only the eigenvectors of the tridiagonal matrix <i>T</i> (<i>α</i> ,<i>β</i> ) = tridiag[<i>β b</i>, <i>a</i>,<i>αb</i>] in a block form, where <i>a</i> and <i>b</i> are scalars. The transformation matrices, their inverses, and the explicit form of the decomposed block diagonal matrices are derived in this paper. Numerical examples and experiments are also presented to demonstrate the validity and usefulness of the approach. Due to the decoupled nature of the decomposed matrices, this approach lends itself to parallel and distributed computations for solving both linear systems and eigenvalue problems using multiprocessors. 展开更多
关键词 Block Tridiagonal Matrices Block fourier decomposition Linear Systems Eigenvalue Problems
下载PDF
A Sparse Kernel Approximate Method for Fractional Boundary Value Problems
5
作者 Hongfang Bai Ieng Tak Leong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1406-1421,共16页
In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[... In this paper,the weak pre-orthogonal adaptive Fourier decomposition(W-POAFD)method is applied to solve fractional boundary value problems(FBVPs)in the reproducing kernel Hilbert spaces(RKHSs)W_(0)^(4)[0,1] and W^(1)[0,1].The process of the W-POAFD is as follows:(i)choose a dictionary and implement the pre-orthogonalization to all the dictionary elements;(ii)select points in[0,1]by the weak maximal selection principle to determine the corresponding orthonormalized dictionary elements iteratively;(iii)express the analytical solution as a linear combination of these determined dictionary elements.Convergence properties of numerical solutions are also discussed.The numerical experiments are carried out to illustrate the accuracy and efficiency of W-POAFD for solving FBVPs. 展开更多
关键词 Weak pre-orthogonal adaptive fourier decomposition(W-POAFD) Weak maximal selection principle Fractional boundary value problems(FBVPs) Reproducing kernel Hilbert space(RKHS)
下载PDF
ANALYTIC PHASE RETRIEVAL BASED ON INTENSITY MEASUREMENTS
6
作者 Wei QU Tao QIAN +2 位作者 Guantie DENG Youfa LI Chunxu ZHOU 《Acta Mathematica Scientia》 SCIE CSCD 2021年第6期2123-2135,共13页
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i... This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|. 展开更多
关键词 phase retrieval Hardy space of the unit disc Szegökernel Takenaka-Malmquist system Gram-Schmidt orthogonalization adaptive fourier decomposition
下载PDF
Fourier mode decomposition of PIV data. 被引量:6
7
作者 MA LiQun FENG LiHao +2 位作者 PAN Chong GAO Qi WANG JinJun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1935-1948,共14页
The modal decomposition technique is one of the most effective methods for studying the flow dynamics in a complex flow. By rejuvenating the discrete Fourier transform(DFT), this paper proposes a Fourier mode decompos... The modal decomposition technique is one of the most effective methods for studying the flow dynamics in a complex flow. By rejuvenating the discrete Fourier transform(DFT), this paper proposes a Fourier mode decomposition(FMD) method for the time series of particle image velocimetry(PIV) data from the fluid field. An experimental case concerning the control of the flow around a circular cylinder by a synthetic jet positioned at the rear stagnation point is used to demonstrate the use of the FMD method. In the three different regimes where the natural shedding frequency and actuation frequency dominate respectively or simultaneously, it is found that the FMD method is capable of extracting the dynamic mode along with its amplitude and phase according to the selected characteristic frequency based on the global power spectrum. For the quasiperiodic flow phenomena presented in this particular case, the FMD method can reconstruct the original flow field using the zero-th mode and the selected mode corresponding to the characteristic frequency. Similarities and differences between the FMD method and the dynamical mode decomposition(DMD) and proper orthogonal decomposition(POD) methods are also discussed. 展开更多
关键词 flow control vortex dynamics fourier mode decomposition (FMD)
原文传递
Positive-instantaneous frequency and approximation 被引量:2
8
作者 Tao QIAN 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第3期337-371,共35页
Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and ... Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and practice of uniqueness of such frequency representation(decomposition)raise the related topics in approximation.During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations.The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies.The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values,and in particular,promotes kernel approximation for multi-variate functions.This article mainly serves as a survey.It also gives two important technical proofs of which one for a general convergence result(Theorem 3.4),and the other for necessity of multiple kernel(Lemma 3.7).Expositorily,for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f.Such function F has the form F=f+iHf,where H stands for the Hilbert transformation of the context.We develop fast converging expansions of F in orthogonal terms of the form F=∑k=1^(∞)c_(k)B_(k),where B_(k)'s are also Hardy space functions but with the additional properties B_(k)(t)=ρ_(k)(t)e^(iθ_(k)(t)),ρk≥0,θ′_(k)(t)≥0,a.e.The original real-valued function f is accordingly expanded f=∑k=1^(∞)ρ_(k)(t)cosθ_(k)(t)which,besides the properties ofρ_(k)andθ_(k)given above,also satisfies H(ρ_(k)cosθ_(k))(t)ρ_(k)(t)sinρ_(k)(t).Real-valued functions f(t)=ρ(t)cosθ(t)that satisfy the conditionρ≥0,θ′(t)≥0,H(ρcosθ)(t)=ρ(t)sinθ(t)are called mono-components.If f is a mono-component,then the phase derivativeθ′(t)is defined to be instantaneous frequency of f.The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion.Mono-components are crucial to understand the concept instantaneous frequency.We will present several most important mono-component function classes.Decompositions of signals into mono-components are called adaptive Fourier decompositions(AFDs).Wc note that some scopes of the studies on the ID mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds.We finally provide an account of related studies in pure and applied mathematics. 展开更多
关键词 Möbius transform blaschke product mono-component hilbert transform hardy space inner and outer functions adaptive fourier decomposition rational orthogonal system nevanlinna factorization beurling-lax theorem reproducing kernel hilbert space several complex variables Clifford alge-bra pre-orthogonal AFD
原文传递
A class of iterative greedy algorithms related to Blaschke product
9
作者 Tao Qian Lihui Tan Jiecheng Chen 《Science China Mathematics》 SCIE CSCD 2021年第12期2703-2718,共16页
Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instan... Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instantaneous frequencies of signals they represent.The positive analytic phase derivative has been a widely interested subject among signal analysts(see Gabor(1946)).Research results of the positive analytic frequency and applications appears in the literature since the middle of the 20th century.Of the positive frequency study a directly related topic is positive frequency decomposition of signals.The mainly focused methods of such decompositions include the maximal selection method and the Blaschke product unwinding method,and joint use of the mentioned methods.In this paper,we propose a class of iterative greedy algorithms based on the Blaschke product and adaptive Fourier decomposition.It generalizes the Blaschke product unwinding method by subtracting constants other than the averages of the remaining functions,aiming at larger winding numbers,and subtracting n-Blaschke forms of the remaining functions,aiming at generating larger numbers of zero-crossings,to fast reduce energy of the remaining terms.Furthermore,we give a comprehensive and rigorous proof of the converging rate in terms of the zeros of the remainders.Finite Blaschke product methods are proposed to avoid the in nite phase derivative dilemma,and to avoid the computational diculties. 展开更多
关键词 complex Hardy space Mobius transform Blaschke product rational orthogonal system Takenaka-Malmquist system mono-component adaptive fourier decomposition unwinding Blaschke expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部