Traditional approaches of spatial spectral estimation are usually based on the second-order statistics. The higher-order cumulants and the poly-spectrum contain more information and are capable of reducing the Gaussia...Traditional approaches of spatial spectral estimation are usually based on the second-order statistics. The higher-order cumulants and the poly-spectrum contain more information and are capable of reducing the Gaussian noise. In this paper, we present a new spectrum estimation method for direction-finding, the FOMUSIC algorithm, which is based on the eigen-structure analysis of the fourth-order cumulants. The derivation of the algorithm is given in detail and its performance is illustrated by both the computer simulations and the experiments of a direction-finding system. The obtained results demonstrate that the fourth-order cumulants based method outperforms the traditional methods, especially when the noise is an unknown colored one.展开更多
The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-or...The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-order cumulant beamforming technique. In this paper, the array gain functions of the fourth-order cumulant beamforming are deducted considering the instantaneous amplitude distribution of the ambient sea noise and bottom reverberation respectively. And the relationships are determined between array gain and the factors including the number of the array elements, the fourth-order and second-order statistical properties of the noise and reverberation, and the input signal-to-noise ratio. It is also verified that there is a critical signal-to-interference ratio and the fourth-order cumulant beamforming can obtain higher gain and resolution than the conventional beamforming method when the ratio is larger than it. The results of experiment data processing demonstrate that the gain and the resolution of the fourth-order cumulant beamforming coincide with the theoretic.展开更多
The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode...The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function.As an application,we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states:a mixture of vacuum and Fock states,single-photon added thermal states,and even/odd Schr¨odinger cat states.It is shown that such a criterion is faithful and effective for revealing non-Gaussianity.We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.展开更多
Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt...Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Based on fourth-order cumulant and ESPRIT algorithm, a novel joint frequency, two-dimensional angle of arrival (2D AOA) and the polarization estimation method of incoming multiple independent spatial narrow-band non-G...Based on fourth-order cumulant and ESPRIT algorithm, a novel joint frequency, two-dimensional angle of arrival (2D AOA) and the polarization estimation method of incoming multiple independent spatial narrow-band non-Gaussian signals in arbitrary Gaussian noise environment are proposed . The array is composed of crossed dipoles parallel to the coordinate axes. The crossed dipole positions are arbitrarily distributed. Computer simulation confirms its feasibility.展开更多
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ...BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.展开更多
We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-...We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.展开更多
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma...Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.展开更多
This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularl...This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.展开更多
Due to their high density,the ilmenite-bearing cumulates(IBC)(with or without KREEP)formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar ...Due to their high density,the ilmenite-bearing cumulates(IBC)(with or without KREEP)formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn.Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary(CMB).However,partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant,thus preventing the IBC/KREEP layer from sinking to the CMB.Here,we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model.The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt%partial melting in the shallow(~120 km)and a much larger degree of partial melting in the deep lunar mantle(~420 km).Due to the density contrast with the surrounding mantle,IBC/KREEP-bearing melts could potentially decouple under certain conditions.The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean.Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase,clinopyroxene,garnet,and incompatible radioactive elements into the deep lunar mantle,which will further affect the thermal and chemical evolution of the lunar interior.展开更多
This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, com...This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures.展开更多
Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects an...Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects and cumulative effects of repeated blasts.Therefore,rats were used as the experimental samples to suffer from explosion blasts with different peak air overpressures(167 kPa~482 kPa)and varying number of repeated blasts.The cumulative effect of craniocerebral trauma was most pronounced for moderate repeated blast,showing approximately 95%increase of trauma severity with penta blast,and an approximately 85%increase of trauma severity with penta minor blast.The cumulative effect of craniocerebral trauma from severe,repeated blast has a smaller rate of change compared to the other two conditions.The severity of trauma from penta blast increased by approximately 69%compared to a single blast.Comprehensive physiological,pathological and biochemical analysis show that the degree of neurological trauma caused by repeated blasts is higher than that of single blasts,and the pathological trauma to brain tissue is more extensive and severe.The trauma degree remains unchanged after double blast,increases by one grade after triple or quadruple blast,and increases by two grades after penta blast.展开更多
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k...This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).展开更多
Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop w...Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop water status.With three-year field experiments with winter wheat,encompassing two irrigation levels(rainfed and irrigation at jointing and anthesis)and three N levels(0,180,and 270 kg ha1),this study aims to establish a novel approach for determining the Nc dilution curve based on crop cumulative transpiration(T),providing a comprehensive analysis of the interaction between N and water availability.The Nc curves derived from both crop dry matter(DM)and T demonstrated N concentration dilution under different conditions with different parameters.The equation Nc=6.43T0.24 established a consistent relationship across varying irrigation regimes.Independent test results indicated that the nitrogen nutrition index(NNI),calculated from this curve,effectively identifies and quantifies the two sources of N deficiency:insufficient N supply in the soil and insufficient soil water concentration leading to decreased N availability for root absorption.Additionally,the NNI calculated from the Nc-DM and Nc-T curves exhibited a strong negative correlation with accumulated N deficit(Nand)and a positive correlation with relative grain yield(RGY).The NNI derived from the Nc-T curve outperformed the NNI derived from the Nc-DM curve concerning its relationship with Nand and RGY,as indicated by larger R2 values and smaller AIC.The novel Nc curve based on T serves as an effective diagnostic tool for assessing winter wheat N status,predicting grain yield,and optimizing N fertilizer management across varying irrigation conditions.These findings would provide new insights and methods to improve the simulations of water-N interaction relationship in crop growth models.展开更多
Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developm...Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.展开更多
A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-G...A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.展开更多
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and...Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.展开更多
文摘Traditional approaches of spatial spectral estimation are usually based on the second-order statistics. The higher-order cumulants and the poly-spectrum contain more information and are capable of reducing the Gaussian noise. In this paper, we present a new spectrum estimation method for direction-finding, the FOMUSIC algorithm, which is based on the eigen-structure analysis of the fourth-order cumulants. The derivation of the algorithm is given in detail and its performance is illustrated by both the computer simulations and the experiments of a direction-finding system. The obtained results demonstrate that the fourth-order cumulants based method outperforms the traditional methods, especially when the noise is an unknown colored one.
基金supported by the national Natural Science Foundation of China(51279033)the Natural Science Foundation of Heilongjiang Province,China(F201346)
文摘The fourth-order cumulant of zero mean Gaussian distribution noise always equals to zero theoretically. In practice the probability density of noise and reverberation is the key problem to performance of the fourth-order cumulant beamforming technique. In this paper, the array gain functions of the fourth-order cumulant beamforming are deducted considering the instantaneous amplitude distribution of the ambient sea noise and bottom reverberation respectively. And the relationships are determined between array gain and the factors including the number of the array elements, the fourth-order and second-order statistical properties of the noise and reverberation, and the input signal-to-noise ratio. It is also verified that there is a critical signal-to-interference ratio and the fourth-order cumulant beamforming can obtain higher gain and resolution than the conventional beamforming method when the ratio is larger than it. The results of experiment data processing demonstrate that the gain and the resolution of the fourth-order cumulant beamforming coincide with the theoretic.
基金Project supported by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ30535)。
文摘The non-Gaussianity of quantum states incarnates an important resource for improving the performance of continuous-variable quantum information protocols.We propose a novel criterion of non-Gaussianity for single-mode rotationally symmetric quantum states via the squared Frobenius norm of higher-order cumulant matrix for the quadrature distribution function.As an application,we study the non-Gaussianities of three classes of single-mode symmetric non-Gaussian states:a mixture of vacuum and Fock states,single-photon added thermal states,and even/odd Schr¨odinger cat states.It is shown that such a criterion is faithful and effective for revealing non-Gaussianity.We further extend this criterion to two cases of symmetric multi-mode non-Gaussian states and non-symmetric single-mode non-Gaussian states.
基金Project supported by the National Natural Science Foundation of China(Nos.12072297 and12202370)the Natural Science Foundation of Sichuan Province of China(No.24NSFSC4777)。
文摘Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘Based on fourth-order cumulant and ESPRIT algorithm, a novel joint frequency, two-dimensional angle of arrival (2D AOA) and the polarization estimation method of incoming multiple independent spatial narrow-band non-Gaussian signals in arbitrary Gaussian noise environment are proposed . The array is composed of crossed dipoles parallel to the coordinate axes. The crossed dipole positions are arbitrarily distributed. Computer simulation confirms its feasibility.
基金National Natural Science Foundation of China,No.72101236China Postdoctoral Science Foundation,No.2022M722900+1 种基金Collaborative Innovation Project of Zhengzhou City,No.XTCX2023006Nursing Team Project of the First Affiliated Hospital of Zhengzhou University,No.HLKY2023005.
文摘BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD.
基金supported by the NationalNatural Science Foundation of China(12001236)the Natural Science Foundation of Guangdong Province(2020A1515110494)。
文摘We consider the fourth-order nonlinear Schr?dinger equation(4NLS)(i?t+εΔ+Δ2)u=c1um+c2(?u)um-1+c3(?u)2um-2,and establish the conditional almost sure global well-posedness for random initial data in Hs(Rd)for s∈(sc-1/2,sc],when d≥3 and m≥5,where sc:=d/2-2/(m-1)is the scaling critical regularity of 4NLS with the second order derivative nonlinearities.Our proof relies on the nonlinear estimates in a new M-norm and the stability theory in the probabilistic setting.Similar supercritical global well-posedness results also hold for d=2,m≥4 and d≥3,3≤m<5.
基金Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA28040000,XDA28120000Natural Science Foundation of Shandong Province,Grant No.ZR2021MF094+2 种基金Key R&D Plan of Shandong Province,Grant No.2020CXGC010804Central Leading Local Science and Technology Development Special Fund Project,Grant No.YDZX2021122Science&Technology Specific Projects in Agricultural High-tech Industrial Demonstration Area of the Yellow River Delta,Grant No.2022SZX11。
文摘Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm.
文摘This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.
基金funded by the National Natural Science Foundation of China(41773052,41973058)。
文摘Due to their high density,the ilmenite-bearing cumulates(IBC)(with or without KREEP)formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn.Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary(CMB).However,partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant,thus preventing the IBC/KREEP layer from sinking to the CMB.Here,we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model.The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt%partial melting in the shallow(~120 km)and a much larger degree of partial melting in the deep lunar mantle(~420 km).Due to the density contrast with the surrounding mantle,IBC/KREEP-bearing melts could potentially decouple under certain conditions.The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean.Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase,clinopyroxene,garnet,and incompatible radioactive elements into the deep lunar mantle,which will further affect the thermal and chemical evolution of the lunar interior.
文摘This work presents a comprehensive fourth-order predictive modeling (PM) methodology that uses the MaxEnt principle to incorporate fourth-order moments (means, covariances, skewness, kurtosis) of model parameters, computed and measured model responses, as well as fourth (and higher) order sensitivities of computed model responses to model parameters. This new methodology is designated by the acronym 4<sup>th</sup>-BERRU-PM, which stands for “fourth-order best-estimate results with reduced uncertainties.” The results predicted by the 4<sup>th</sup>-BERRU-PM incorporates, as particular cases, the results previously predicted by the second-order predictive modeling methodology 2<sup>nd</sup>-BERRU-PM, and vastly generalizes the results produced by extant data assimilation and data adjustment procedures.
基金supported by the National Natural Science Foundation of China(Grant No.12372356)Postgraduate Scientific Research In-novation Project of Hunan Province(Grant No.CX20221044).
文摘Repeated blast impacts on personnel in explosive environments can exacerbate craniocerebral trauma.Most existing studies focus on the injury effects of a single blast,lacking in-depth analysis on the injury effects and cumulative effects of repeated blasts.Therefore,rats were used as the experimental samples to suffer from explosion blasts with different peak air overpressures(167 kPa~482 kPa)and varying number of repeated blasts.The cumulative effect of craniocerebral trauma was most pronounced for moderate repeated blast,showing approximately 95%increase of trauma severity with penta blast,and an approximately 85%increase of trauma severity with penta minor blast.The cumulative effect of craniocerebral trauma from severe,repeated blast has a smaller rate of change compared to the other two conditions.The severity of trauma from penta blast increased by approximately 69%compared to a single blast.Comprehensive physiological,pathological and biochemical analysis show that the degree of neurological trauma caused by repeated blasts is higher than that of single blasts,and the pathological trauma to brain tissue is more extensive and severe.The trauma degree remains unchanged after double blast,increases by one grade after triple or quadruple blast,and increases by two grades after penta blast.
文摘This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).
基金supported by the National Key Research and Development Program of China(2022YFD2001005)the Key Research&Development Program of Jiangsu province(BE2021358)+2 种基金the National Natural Science Foundation of China(32271989)the Natural Science Foundation of Jiangsu province(BK20220146)the Jiangsu Independent Innovation Fund Project of Agricultural Science and Technology[CX(23)3121].
文摘Accurate nitrogen(N)nutrition diagnosis is essential for improving N use efficiency in crop production.The widely used critical N(Nc)dilution curve traditionally depends solely on agronomic variables,neglecting crop water status.With three-year field experiments with winter wheat,encompassing two irrigation levels(rainfed and irrigation at jointing and anthesis)and three N levels(0,180,and 270 kg ha1),this study aims to establish a novel approach for determining the Nc dilution curve based on crop cumulative transpiration(T),providing a comprehensive analysis of the interaction between N and water availability.The Nc curves derived from both crop dry matter(DM)and T demonstrated N concentration dilution under different conditions with different parameters.The equation Nc=6.43T0.24 established a consistent relationship across varying irrigation regimes.Independent test results indicated that the nitrogen nutrition index(NNI),calculated from this curve,effectively identifies and quantifies the two sources of N deficiency:insufficient N supply in the soil and insufficient soil water concentration leading to decreased N availability for root absorption.Additionally,the NNI calculated from the Nc-DM and Nc-T curves exhibited a strong negative correlation with accumulated N deficit(Nand)and a positive correlation with relative grain yield(RGY).The NNI derived from the Nc-T curve outperformed the NNI derived from the Nc-DM curve concerning its relationship with Nand and RGY,as indicated by larger R2 values and smaller AIC.The novel Nc curve based on T serves as an effective diagnostic tool for assessing winter wheat N status,predicting grain yield,and optimizing N fertilizer management across varying irrigation conditions.These findings would provide new insights and methods to improve the simulations of water-N interaction relationship in crop growth models.
文摘Cumulative assessment is a tool for the project developer to try and take into consideration not only their contribution to cumulative impacts but also other projects and external factors that may place their developments at risk.This study assessed the cumulative impacts of air emissions from 22 major power plants in southeast Bangladesh planned to generate 21,550 MW of electricity.It also includes anticipated growth in small to medium size industries,brickfields,highway traffic,inland water transport,transhippers,jetty,and vessel transports used for transporting fuel resources for these power plants.A 50 km by 50 km airshed is considered for air quality modeling.Cumulative analysis indicates that predicted MGLCs(Maximum Ground Level Concentrations)of NO2 and CO are complying with both Bangladesh NAAQS(National Ambient Air Quality Standards)and WBG(World Bank Group)Guidelines.The daily average MGLC of PM_(2.5)(62.45µg/m^(3))from all sources complies with NAAQS,however,exceeds the WBG Guidelines.Annual PM_(2.5) concentration(15.45µg/m^(3))exceeds NAAQS and WBG Guidelines.The PM10 concentration complies with the NAAQS for both 24-hour and annual averaging times.Annual average concentration(23.12µg/m^(3))exceeds WBG Guidelines.Daily average SO2 concentration(102.49µg/m^(3))complies with the NAAQS however,it exceeds the WBG guideline values.High concentrations of PM_(2.5) and SO2 are due to the contribution of transboundary emissions and secondary pollutants in the atmosphere.This dispersion modeling outcome can be used by the policymakers for the pollution reduction strategy.
基金This project was supported by the Graduate Innovation Laboratory of Jilin University(502039)Jilin Science Committee of China(20030519)+1 种基金the National Natural Science Foundation of China (69872012)the Foundation of Nanjing Institute of Technology.
文摘A joint estimation algorithm of direction of arrival (DOA), frequency, and polarization, based on fourth-order cumulants and uniform circular array (UCA) of trimmed vector sensors is presented for narrowband non-Gaussian signals. The proposed approach, which is suitable for applications in arbitrary Gaussian noise environments, gives a closed-form representation of the estimated parameters, without spectral peak searching. An efficient method is also provided for elimination of cyclic phase ambiguities. Simulations are presented to show the performance of the algorithm.
基金Project(61201381)supported by the National Nature Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.