A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots ...A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton and Newton-type methods. The results show that the proposed method has some more advantages than others. It enriches the methods to find the roots of non-linear equations and it is important in both theory and application.展开更多
In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jac...This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some...This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.展开更多
In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved dire...In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.展开更多
This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem ha...This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.展开更多
In this paper,we study a coupled fourth-order system of Kirchhoff type.Under appropriate hypotheses of V_(i)(x)for i=1,2,f and g,we obtained two main existence theorems of weak solutions for the problem by variational...In this paper,we study a coupled fourth-order system of Kirchhoff type.Under appropriate hypotheses of V_(i)(x)for i=1,2,f and g,we obtained two main existence theorems of weak solutions for the problem by variational methods.Some recent results are extended.展开更多
In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> ...In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>展开更多
In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order sp...In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.展开更多
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimens...An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.展开更多
In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fract...In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fractional fourth-order parabolic partial differential equations(PDEs)with variable coefficients.The introduced method is used to solve two models of the proposed problem,the analytical and approximate solutions of the models are obtained.The outcomes illustrate that the proposed technique is a highly accurate,and facilitates the process of solving differential equations by comparing it,with the exact solution and those obtained by the variation iteration method(VIM)and Laplace homotopy perturbation method(LHPM).展开更多
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it f...In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.展开更多
In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached condition...In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.展开更多
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574...In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.展开更多
In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounde...In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.展开更多
In this paper,we consider the finite element method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation.In order to avoid using higher order elements,we introduce an intermediate var...In this paper,we consider the finite element method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation.In order to avoid using higher order elements,we introduce an intermediate variableσ=∆u and translate the fourth-order derivative of the original problem into a second-order coupled system.We discretize the fractional time derivative terms by using the L1-approximation and discretize the first-order time derivative term by using the second-order backward differentiation formula.In the fully discrete scheme,we implement the finite element method for the spatial approximation.Unconditional stability of the fully discrete scheme is proven and its optimal convergence order is obtained.Numerical experiments are carried out to demonstrate our theoretical analysis.展开更多
In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniq...In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.展开更多
In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fract...In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm.展开更多
基金Foundation item: Supported by the National Science Foundation of China(10701066) Supported by the National Foundation of the Education Department of Henan Province(2008A110022)
文摘A fourth-order convergence method of solving roots for nonlinear equation, which is a variant of Newton's method given. Its convergence properties is proved. It is at least fourth-order convergence near simple roots and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton and Newton-type methods. The results show that the proposed method has some more advantages than others. It enriches the methods to find the roots of non-linear equations and it is important in both theory and application.
文摘In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
文摘This paper is devoted to Professor Benyu Guo's open question on the C1-conforming quadrilateral spectral element method for fourth-order equations which has been endeavored for years. Starting with generalized Jacobi polynomials on the reference square, we construct the C1-conforming basis functions using the bilinear mapping from the reference square onto each quadrilateral element which fall into three categories-interior modes, edge modes, and vertex modes. In contrast to the triangular element, compulsively compensatory requirements on the global C1-continuity should be imposed for edge and vertex mode basis functions such that their normal derivatives on each common edge are reduced from rational functions to polynomials, which depend on only parameters of the common edge. It is amazing that the C1-conforming basis functions on each quadrilateral element contain polynomials in primitive variables, the completeness is then guaranteed and further confirmed by the numerical results on the Petrov-Galerkin spectral method for the non-homogeneous boundary value problem of fourth-order equations on an arbitrary quadrilateral. Finally, a C1-conforming quadrilateral spectral element method is proposed for the biharmonic eigenvalue problem, and numerical experiments demonstrate the effectiveness and efficiency of our spectral element method.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金The 985 Program of Jilin Universitythe Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University
文摘This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.
文摘In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.
文摘This paper investigates the existence of positive solutions for a fourth-order p-Laplacian nonlinear equation. We show that, under suitable conditions, there exists a positive number λ~*such that the above problem has at least two positive solutions for 0 < λ < λ~* , at least one positive solution for λ = λ~* and no solution forλ > λ~* by using the upper and lower solutions method and fixed point theory.
基金Supported by National Natural Science Foundation of China(Grant No.11671403,11671236)。
文摘In this paper,we study a coupled fourth-order system of Kirchhoff type.Under appropriate hypotheses of V_(i)(x)for i=1,2,f and g,we obtained two main existence theorems of weak solutions for the problem by variational methods.Some recent results are extended.
文摘In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>
文摘In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.
基金The project supported by the National Natural Science Foundation of China(No.19902010)
文摘An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.
文摘In this paper,the modified integral equation,namely,Elzaki transformation coupled with the Adomian decomposition method called Elzaki Adomian decomposition method(EADM)is used to investigate the solution of time-fractional fourth-order parabolic partial differential equations(PDEs)with variable coefficients.The introduced method is used to solve two models of the proposed problem,the analytical and approximate solutions of the models are obtained.The outcomes illustrate that the proposed technique is a highly accurate,and facilitates the process of solving differential equations by comparing it,with the exact solution and those obtained by the variation iteration method(VIM)and Laplace homotopy perturbation method(LHPM).
文摘In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block and implement it for solving the non-stiff initial value problems, being the continuous interpolant derived and collocated at grid and off-grid points. Numerical examples of ordinary differential equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-tained numerical results reveal that the proposed method is efficient.
文摘In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.
文摘In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.
文摘In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.
文摘In this paper,we consider the finite element method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation.In order to avoid using higher order elements,we introduce an intermediate variableσ=∆u and translate the fourth-order derivative of the original problem into a second-order coupled system.We discretize the fractional time derivative terms by using the L1-approximation and discretize the first-order time derivative term by using the second-order backward differentiation formula.In the fully discrete scheme,we implement the finite element method for the spatial approximation.Unconditional stability of the fully discrete scheme is proven and its optimal convergence order is obtained.Numerical experiments are carried out to demonstrate our theoretical analysis.
基金This work is supported in part by the National Natural Science Foundation of China under grants No.12271049,12101035,12131005,U1930402.
文摘In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.
文摘In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm.