In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractio...In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.展开更多
Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive ...Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transforma...Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.展开更多
The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation...The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete periodic patterns reproduces the known resulr of the integrable Ablowitz-Ladik system.展开更多
The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively....The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. A...In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.展开更多
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie gr...The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.展开更多
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap...Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.展开更多
The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Ha...The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.展开更多
In this article, a nonconforming quadrilateral element (named modified quasi- Wilson element) is applied to solve the nonlinear schrSdinger equation (NLSE). On the basis of a special character of this element, tha...In this article, a nonconforming quadrilateral element (named modified quasi- Wilson element) is applied to solve the nonlinear schrSdinger equation (NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(ha) for broken Ha-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover, the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.展开更多
In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a se...In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.展开更多
The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass th...The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.展开更多
The exact chirped soliton-like and quasi-periodic wave solutions of (2 + 1)-dimensional generalized nonlinear Schr6dinger equation including linear and nonlinear gain (loss) with variable coefficients are obtaine...The exact chirped soliton-like and quasi-periodic wave solutions of (2 + 1)-dimensional generalized nonlinear Schr6dinger equation including linear and nonlinear gain (loss) with variable coefficients are obtained detalledly in this paper. The form and the behavior of solutions are strongly affected by the modulation of both the dispersion coefficient and the nonlinearity coefficient. In addition, self-similar soliton-like waves precisely piloted from our obtained solutions by tailoring the dispersion and linear gain (loss).展开更多
We study the nonlinear SchrSdinger equation with time-oscillating nonlinearity and dissipation originated from the recent studies of Bose-Einstein condensates and optical systems which reads iψt+△ψ+Ф(ωt)|ψ...We study the nonlinear SchrSdinger equation with time-oscillating nonlinearity and dissipation originated from the recent studies of Bose-Einstein condensates and optical systems which reads iψt+△ψ+Ф(ωt)|ψ|αψ+iξ (ωt)ψ= 0. Under some conditions, we show that as ω→∞ , the solution ψω will locally converge to the solution of the averaged equation iψt+△ψ+Ф(ωt)|ψ|αψ+iξ (ωt)ψ= 0 with the same initial condition in Lq((0, T), B-S/T,2) for all admissible pairs (q, r), where T∈ (0, Tmax). We also show that if the dissipation coefficient ξ0 large enough, then, ψω is global if w is sufficiently large and ψω converges to ψ in Lq((0, ∞), B-S/T,2), for all admissible pairs (q, r). In particular, our results hold for both subcritical and critical nonlinearities.展开更多
The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational p...The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.展开更多
The purpose of this paper is to present a comparison between the modified nonlinear SchrSdinger (MNLS) equation and the focusing and defocusing variants of the (unmodified) nonlinear SchrSdinger (NLS) equation i...The purpose of this paper is to present a comparison between the modified nonlinear SchrSdinger (MNLS) equation and the focusing and defocusing variants of the (unmodified) nonlinear SchrSdinger (NLS) equation in the semiclassical limit. We describe aspects of the limiting dynamics and discuss how the nature of the dynamics is evident theoretically through inverse-scattering and noncommutative steepest descent methods. The main message is that, depending on initial data, the MNLS equation can behave either like the defocusing NLS equation, like the focusing NLS equation (in both cases the analogy is asymptotically accurate in the semiclassical limit when the NLS equation is posed with appropriately modified initial data), or like an interesting mixture of the two. In the latter case, we identify a feature of the dynamics analogous to a sonic line in gas dynamics, a free boundary separating subsonic flow from supersonic flow.展开更多
In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of...In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.展开更多
The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equa...The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.展开更多
基金supported by the National Natural Science Foundation of China (No. 10671182)
文摘In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
基金The project supported by National Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312
文摘Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10772110) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y606049, Y6090681, and Y6100257).
文摘Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.
基金The project partially supported by the Research Grants Council under Grant Nos, HKU 7123/05E and HKU 7184/04E
文摘The Hirota equation is a higher order extension of the nonlinear Schr6dinger equation by incorporating third order dispersion and one form of self steepening effect, New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete periodic patterns reproduces the known resulr of the integrable Ablowitz-Ladik system.
基金The project supported by National Natural Science Foundation of China under Grant No.10671121
文摘The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10971109 and 10971211supported by Program for New Century Excellent Talents in University under Grant No.NCET-08-0515
文摘In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.
基金supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institutethe National Natural Science Foundation of China under Grant Nos. 10735030 and 90503006
文摘The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.
基金Supported by the Natural Science Foundation of China under Grant No.0971226the 973 Project of China under Grant No.2009CB723802+1 种基金the Research Innovation Fund of Hunan Province under Grant No.CX2011B011the Innovation Fund of NUDT under Grant No.B110205
文摘Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
文摘The coupled nonlinear Schodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.
基金supported by the National Natural Science Foundation of China(11271340,11101381)
文摘In this article, a nonconforming quadrilateral element (named modified quasi- Wilson element) is applied to solve the nonlinear schrSdinger equation (NLSE). On the basis of a special character of this element, that is, its consistency error is of order O(ha) for broken Ha-norm on arbitrary quadrilateral meshes, which is two order higher than its interpolation error, the optimal order error estimate and superclose property are obtained. Moreover, the global superconvergence result is deduced with the help of interpolation postprocessing technique. Finally, some numerical results are provided to verify the theoretical analysis.
基金National Natural Science Foundation of China under Grant No.10671121
文摘In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.
基金Project supported by the National Natural Science Foundation of China (Nos. 10735030and 40775069)the Natural Science Foundation of Guangdong Province of China(No. 10452840301004616)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (No. 408YKQ09)
文摘The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.
基金Supported by the National Natural Science Foundation of China under Grant No.11072219the Zhejiang Provincial Natural Science Foundation under Grant No.Y1100099
文摘The exact chirped soliton-like and quasi-periodic wave solutions of (2 + 1)-dimensional generalized nonlinear Schr6dinger equation including linear and nonlinear gain (loss) with variable coefficients are obtained detalledly in this paper. The form and the behavior of solutions are strongly affected by the modulation of both the dispersion coefficient and the nonlinearity coefficient. In addition, self-similar soliton-like waves precisely piloted from our obtained solutions by tailoring the dispersion and linear gain (loss).
基金supported by the NSFC Grants 10601021 and 11475073
文摘We study the nonlinear SchrSdinger equation with time-oscillating nonlinearity and dissipation originated from the recent studies of Bose-Einstein condensates and optical systems which reads iψt+△ψ+Ф(ωt)|ψ|αψ+iξ (ωt)ψ= 0. Under some conditions, we show that as ω→∞ , the solution ψω will locally converge to the solution of the averaged equation iψt+△ψ+Ф(ωt)|ψ|αψ+iξ (ωt)ψ= 0 with the same initial condition in Lq((0, T), B-S/T,2) for all admissible pairs (q, r), where T∈ (0, Tmax). We also show that if the dissipation coefficient ξ0 large enough, then, ψω is global if w is sufficiently large and ψω converges to ψ in Lq((0, ∞), B-S/T,2), for all admissible pairs (q, r). In particular, our results hold for both subcritical and critical nonlinearities.
基金supported by National Natural Science Foundation of China(11171241)Program for New Century Excellent Talents in University(NCET-12-1058)
文摘The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.
基金supported by the National Science Foundation under grant DMS-0807653
文摘The purpose of this paper is to present a comparison between the modified nonlinear SchrSdinger (MNLS) equation and the focusing and defocusing variants of the (unmodified) nonlinear SchrSdinger (NLS) equation in the semiclassical limit. We describe aspects of the limiting dynamics and discuss how the nature of the dynamics is evident theoretically through inverse-scattering and noncommutative steepest descent methods. The main message is that, depending on initial data, the MNLS equation can behave either like the defocusing NLS equation, like the focusing NLS equation (in both cases the analogy is asymptotically accurate in the semiclassical limit when the NLS equation is posed with appropriately modified initial data), or like an interesting mixture of the two. In the latter case, we identify a feature of the dynamics analogous to a sonic line in gas dynamics, a free boundary separating subsonic flow from supersonic flow.
基金Project supported by the Scientific Research Foundation of Lishui University,China (Grant No. KZ201110)
文摘In this paper,by means of similarity transfomations,we obtain explicit solutions to the cubic-quintic nonlinear Schr顜僤inger equation with varying coefficients,which involve four free functions of space.Four types of free functions are chosen to exhibit the corresponding nonlinear wave propagations.
基金Supported by National Science Foundation of China under Grant No. 2006CB921605
文摘The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.