This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x...This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.展开更多
基金supported by the NSF of China(10571079,10671085)and the program of NCET
文摘This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.