This paper describes a novel dual-feed circularly polarized antenna,and the dual feeding mode is realized by grooving on the antenna radiator.The antenna utilizes air dielectric material to meet the requirements of lo...This paper describes a novel dual-feed circularly polarized antenna,and the dual feeding mode is realized by grooving on the antenna radiator.The antenna utilizes air dielectric material to meet the requirements of low weight and cost.Test results demonstrate that the antenna exhibits capacitive loading between the metal antenna patch and the ground floor,allowing for adjustment of the working frequency of the dual-feed circularly polarized microstrip antenna.Specifically,the original center frequency of 2.264 GHz was reduced to 1.582 GHz,facilitating antenna miniaturization and broad bandwidth.With a return loss(S11)below-10 dB,a bandwidth of 72 MHz(1.552-1.624 GHz)was obtained.Additionally,the dual-feed microstrip antenna incorporates a 90°bridge,resulting in circular polarization gains of 2.26 dBi at 1.561 GHz and 2.45 dBi at 1.575 GHz.Overall,the antenna design offers a large working bandwidth and excellent circular polarization characteristics,making it suitable for a wide range of applications in satellite navigation and positioning terminals.展开更多
This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of a...This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of antenna structure and adjustment of size, the proposed antenna can achieve both the left- and right-hand circular polariza- tions in 2.33 GHz--2.97 GHz. Measurement results indicate that the effective bandwidth is 640 MHz in S-band and the relative bandwidth can achieve 24% with S, less than- 15 dB.展开更多
Circularly polarized microstrip antenna is frequently realized by cutting the slot inside the patch and feeding it along the diagonal axis. In the reported literature, procedure to design them at any given frequency i...Circularly polarized microstrip antenna is frequently realized by cutting the slot inside the patch and feeding it along the diagonal axis. In the reported literature, procedure to design them at any given frequency is not available. In proposed work, circularly polarized slot cut circular microstrip antenna at 900 MHz is discussed. By studying the surface current distributions at two orthogonal modes, formulations in their resonant length are proposed. The frequencies calculated using them closely agree with simulated results. Using proposed formulation, procedure to design circular polarized antennas at different frequencies is presented that gives circular polarized response. Thus, proposed work will be helpful to design similar circular polarized circular microstrip antenna at any desired frequency.展开更多
A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip ...A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip elements.The CP operation is obtained by the quasi-square patch with difference in lengths of the two sides.The antenna has been investigated numerically and experimentally.Measured results show that the array has a Chebyshev pattern with the sidelobe level of-23 dB, the half-power beamwidth of 16° and an impedance bandwidth(S11≤-10 dB) of 130 MHz, which is suitable for RFID reader applications.展开更多
针对全球各国超高频(ultra high frequency,UHF)射频识别技术(radio frequency identification,RFID)系统许可频段不同问题以及圆极化特性天线需求,提出了一种覆盖全球UHF频段(840~960 MHz)的通用型RFID读写器天线。该天线以传统微带单...针对全球各国超高频(ultra high frequency,UHF)射频识别技术(radio frequency identification,RFID)系统许可频段不同问题以及圆极化特性天线需求,提出了一种覆盖全球UHF频段(840~960 MHz)的通用型RFID读写器天线。该天线以传统微带单极子天线为理论基础,采用一个V形边沿接地板和一个微带线偏心馈电的非对称多边形辐射贴片,实现了天线的圆极化和宽带化特性。天线尺寸大小为90 mm×100 mm×0.8 mm。使用HFSS软件对天线进行了建模、仿真和优化设计,并对天线实物进行了测试,测试结果跟仿真结果有着良好的一致性。最后得到的天线阻抗带宽为154 MHz,相对阻抗带宽为17.2%;轴比带宽为211 MHz,相对轴比带宽为22.8%;+Z方向上的最大增益为2.1 dBi;在+Z和-Z方向上分别辐射右旋圆极化波和左旋圆极化波。该天线具有宽带且小型化的良好特性,能满足全球通用型UHF RFID读写器天线的应用要求。展开更多
A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several t...A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.展开更多
文摘This paper describes a novel dual-feed circularly polarized antenna,and the dual feeding mode is realized by grooving on the antenna radiator.The antenna utilizes air dielectric material to meet the requirements of low weight and cost.Test results demonstrate that the antenna exhibits capacitive loading between the metal antenna patch and the ground floor,allowing for adjustment of the working frequency of the dual-feed circularly polarized microstrip antenna.Specifically,the original center frequency of 2.264 GHz was reduced to 1.582 GHz,facilitating antenna miniaturization and broad bandwidth.With a return loss(S11)below-10 dB,a bandwidth of 72 MHz(1.552-1.624 GHz)was obtained.Additionally,the dual-feed microstrip antenna incorporates a 90°bridge,resulting in circular polarization gains of 2.26 dBi at 1.561 GHz and 2.45 dBi at 1.575 GHz.Overall,the antenna design offers a large working bandwidth and excellent circular polarization characteristics,making it suitable for a wide range of applications in satellite navigation and positioning terminals.
基金Supported by National Basic Research Program of China ("973" Program,No.2007CB310605)
文摘This paper proposes a compact polarization microstrip antenna based on double-layer structure. The band- width of the whole antenna is widened by expanding the top and bottom layers respectively. After the design of antenna structure and adjustment of size, the proposed antenna can achieve both the left- and right-hand circular polariza- tions in 2.33 GHz--2.97 GHz. Measurement results indicate that the effective bandwidth is 640 MHz in S-band and the relative bandwidth can achieve 24% with S, less than- 15 dB.
文摘Circularly polarized microstrip antenna is frequently realized by cutting the slot inside the patch and feeding it along the diagonal axis. In the reported literature, procedure to design them at any given frequency is not available. In proposed work, circularly polarized slot cut circular microstrip antenna at 900 MHz is discussed. By studying the surface current distributions at two orthogonal modes, formulations in their resonant length are proposed. The frequencies calculated using them closely agree with simulated results. Using proposed formulation, procedure to design circular polarized antennas at different frequencies is presented that gives circular polarized response. Thus, proposed work will be helpful to design similar circular polarized circular microstrip antenna at any desired frequency.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘A low-sidelobe circularly-polarized(CP) microstrip patch array for 2.4 GHz radio frequency identification(RFID) readers is presented.The antenna array with a Chebyshev current distribution is composed of 6 microstrip elements.The CP operation is obtained by the quasi-square patch with difference in lengths of the two sides.The antenna has been investigated numerically and experimentally.Measured results show that the array has a Chebyshev pattern with the sidelobe level of-23 dB, the half-power beamwidth of 16° and an impedance bandwidth(S11≤-10 dB) of 130 MHz, which is suitable for RFID reader applications.
文摘A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.