Diffusion-limited aggregation (DLA) assumes that particles perform pure random walk at a finite tem- perature and aggregate when they come close enough and stick together. Although it is well known that DLA in two d...Diffusion-limited aggregation (DLA) assumes that particles perform pure random walk at a finite tem- perature and aggregate when they come close enough and stick together. Although it is well known that DLA in two dimensions results in a ramified fractal structure, how the particle shape influences the formed morphology is still un- clear. In this work, we perform the off-lattice two-dimensional DLA simulations with different particle shapes of triangle, quadrangle, pentagon, hexagon, and octagon, respectively, and compare with the results for circular particles. Our results indicate that different particle shapes only change the local structure, but have no effects on the global structure of the formed fractal duster. The local compactness decreases as the number of polygon edges increases.展开更多
基金Supported by the Hundred Talent Program of the Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China under Grant Nos. 10974208, 11121403, 1083401401, and 91027045
文摘Diffusion-limited aggregation (DLA) assumes that particles perform pure random walk at a finite tem- perature and aggregate when they come close enough and stick together. Although it is well known that DLA in two dimensions results in a ramified fractal structure, how the particle shape influences the formed morphology is still un- clear. In this work, we perform the off-lattice two-dimensional DLA simulations with different particle shapes of triangle, quadrangle, pentagon, hexagon, and octagon, respectively, and compare with the results for circular particles. Our results indicate that different particle shapes only change the local structure, but have no effects on the global structure of the formed fractal duster. The local compactness decreases as the number of polygon edges increases.