Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of fro...Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of frost formation and growth on the cryogenic surface in various shapes at different stages were obtained by experimental measurements, and a numerical simulation of frost formation and growth was carried out based on Diffusion Limited Aggregation (DLA) model of fractal theory in this paper. Based on the frost structure obtained by experiment, the fractal dimension of pore area distribution and porosity of frost layer on the cryogenic finned-tube?vaporizer were calculated by using fractal method, and combined with heat conduction model of frost layer obtained by thermal resistance method, the thermal conductivity of frost on the cryogenic surface was calculated. The result shows that the thermal conductivity calculated by the fractal model coincides with the range of the experimental data. Additionally, comparison with other heat conduction models indicated that it is feasible to introduce the fractal dimension of pore area distribution into heat conduction model to deduce the thermal conductivity of frost.展开更多
文摘Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of frost formation and growth on the cryogenic surface in various shapes at different stages were obtained by experimental measurements, and a numerical simulation of frost formation and growth was carried out based on Diffusion Limited Aggregation (DLA) model of fractal theory in this paper. Based on the frost structure obtained by experiment, the fractal dimension of pore area distribution and porosity of frost layer on the cryogenic finned-tube?vaporizer were calculated by using fractal method, and combined with heat conduction model of frost layer obtained by thermal resistance method, the thermal conductivity of frost on the cryogenic surface was calculated. The result shows that the thermal conductivity calculated by the fractal model coincides with the range of the experimental data. Additionally, comparison with other heat conduction models indicated that it is feasible to introduce the fractal dimension of pore area distribution into heat conduction model to deduce the thermal conductivity of frost.