期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Spectrality of a Class of Fractal Measures on R^(n)
1
作者 Jing Cheng LIU Zhi Yong WANG +1 位作者 Yao LIU Ya SHI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第5期952-966,共15页
Let M=ρ^(-1)I∈Mn(R)be an expanding matrix with 0<|ρ|<1 and D■Z^(n)be a finite digit set with O∈D and Z(mD)■Z(mD)■Z(mD)∪{0}■m^(-1)z^(n)for a prime m,where Z(mD):=(Ede emi(a)=O),LetμM.D be theassociateds... Let M=ρ^(-1)I∈Mn(R)be an expanding matrix with 0<|ρ|<1 and D■Z^(n)be a finite digit set with O∈D and Z(mD)■Z(mD)■Z(mD)∪{0}■m^(-1)z^(n)for a prime m,where Z(mD):=(Ede emi(a)=O),LetμM.D be theassociatedsel-simiar measure defined by M.DO)-ZaeDμM,D(M()-d).In this paper,the necessary and sufficient conditions for L2(μM,D)to admit infinite orthogonal exponential functions are given.Moreover,by using the order theory of polynomial,we estimate the number of orthogonal exponential functions for all cases that L^(2)(μM,D)does not admit infinite orthogonal exponential functions. 展开更多
关键词 fractal spectral measure orthogonal exponentials Fourier transform SPECTRUM
原文传递
HERMITE EXPANSIONS AND FRACTALMEASURES
2
作者 张震球 《Acta Mathematica Scientia》 SCIE CSCD 1998年第2期167-173,共7页
Let mu be a locally uniformly alpha-dimensional measure on R-n and P-t(fd mu) be the Able Poisson means of Hermite expansions for f is an element of L-p(d mu), it is studied that the asymptotis properties of P-t(fd mu... Let mu be a locally uniformly alpha-dimensional measure on R-n and P-t(fd mu) be the Able Poisson means of Hermite expansions for f is an element of L-p(d mu), it is studied that the asymptotis properties of P-t(fd mu) as t --> 1_. Analogue of Wiener's theorem is obtained. Author also establishs the boundedness of the alpha-dimensional maximal conjugate Poisson integral operators from L-p(d mu) to the Lebesgne p-power integrable function spaces L-p(dx), and this derives directly the boundedness of Riesz transforms. 展开更多
关键词 fractal measures Hermite expansions Riesz transforms
全文增补中
THE INTEGRAL FORMULA FOR CALCULATINGTHE HAUSDORFF MEASURE OF SOME FRACTAL SETS
3
作者 Lu Shipan (Jimei University, China) Su Weiyi (Nanjing University, China) 《Analysis in Theory and Applications》 2001年第1期70-75,共6页
It is important to calculate the Hausdorff dimension and the Hausdorff mesure respect to this dimension for some fractal sets. By using the usual method of “Mass Distribution”, we can only calculate the Hausdorff di... It is important to calculate the Hausdorff dimension and the Hausdorff mesure respect to this dimension for some fractal sets. By using the usual method of “Mass Distribution”, we can only calculate the Hausdorff dimension. In this paper, we will construct an integral formula by using lower inverse s-density and then use it to calculate the Hausdorff measures for some fractional dimensional sets. 展开更多
关键词 THE INTEGRAL FORMULA FOR CALCULATINGTHE HAUSDORFF MEASURE OF SOME fractal SETS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部