Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many...Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.展开更多
This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of...This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.展开更多
Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation...Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.展开更多
A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensiona...A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensional lower order spline case.Our algorithm can have arbitrary order of approximation and is applicable to the multidimensional case.We present this algorithm in a general case with emphasis on splines anti quast in terpolations.Numerical examples are included to justify our theorerical discussion.展开更多
The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav...The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.展开更多
In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on ...In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on Set Partitioning In Hierarchical Trees (SPIHT) is brought out after studying the integer lifting scheme wavelet transform in detail.The proposed algorithm modifies zero-tree structure of SPIHT,establishes single dimensional wavelet coefficient tree of ECG signals and enhances the efficiency of SPIHT-encoding by distributing bits rationally,improving zero-tree set and ameliorating classifying method.For this improved algorithm,floating-point com- putation and storage are left out of consideration and it is easy to be implemented by hardware and software.Experimental results prove that the new algorithm has admirable features of low complexity, high speed and good performance in signal reconstruction.High compression ratio is obtained with high signal fidelity as well.展开更多
A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of imag...A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologists reach their goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images. The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet Transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.3%.展开更多
Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcificat...Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of selected singularities supports the statistical findings. It is important to select the suitable computation parameters-thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target property as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolution both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the breast abnormality characterization.展开更多
Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied....Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.展开更多
This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized ...This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.展开更多
Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexin...Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.展开更多
We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is gen...We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is generated, which has the similar features with the corresponding biorthogonal wavelet transform. Experimental results of the method based on integer wavelet transform are given to show better performance and great applicable potentiality in medical image compression.展开更多
Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods...Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power.展开更多
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most pr...In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.展开更多
Image interpolation is widely studied and used in digital image processing. In this paper, a method of image magnification according to the properties of fi'actal interpolation and wavelet transformation are presente...Image interpolation is widely studied and used in digital image processing. In this paper, a method of image magnification according to the properties of fi'actal interpolation and wavelet transformation are presented. We focus the development of edge forming methods to be applied as a post process of standard image zooming methods for grayscale images, with the hope of retaining edges. Experiments make sure it valid.展开更多
A coding method of speech compression, which is based on Wavlet Transform and Vector Quantization (VQ), is developed and studied. The Wavlet Thansform or Wavlet Packet Thansform is used to process the speech signal, t...A coding method of speech compression, which is based on Wavlet Transform and Vector Quantization (VQ), is developed and studied. The Wavlet Thansform or Wavlet Packet Thansform is used to process the speech signal, then VQ is used to compress the coefficients of Wavlet Thansform, and the entropy coding is used to decrease the bit rate. The experimental results show that the speech signal, sampled by 8 kHz sampling rate and 8 bit quatisation,i.e., 64 kbit/s bit rate, can be compressed to 6 - 8 kbit/s, and still have high speech quality,and the low-delay, only 8 ms.展开更多
Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing....Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing. Because large amounts of data and limited bandwidth complicate the storage and transmission of data measured by TB-level bits, it is important to compress image data acquired by hyperspectral sensors such as MODIS, PHI, and OMIS; otherwise, conventional lossless compression algorithms cannot reach adequate compression ratios. Other loss-compression methods can reach high compression ratios but lack good image fidelity, especially for hyperspectral image data. Among the third generation of image compression algorithms, fractal image compression based on wavelet transformation is superior to traditional compression methods,because it has high compression ratios and good image fidelity, and requires less computing time. To keep the spectral dimension invariable, the authors compared the results of two compression algorithms based on the storage-file structures of BSQ and of BIP, and improved the HV and Quadtree partitioning and domain-range matching algorithms in order to accelerate their encode/decode efficiency. The authors' Hyperspectral Image Process and Analysis System (HIPAS) software used a VC++6.0 integrated development environment (IDE), with which good experimental results were obtained. Possible modifications of the algorithm and limitations of the method are also discussed.展开更多
This paper presents some results of the relation between wavelet transform and fractal transform. The wavelet transform of the attractor of fractal transform posseses translational and scale invariance. So we speed th...This paper presents some results of the relation between wavelet transform and fractal transform. The wavelet transform of the attractor of fractal transform posseses translational and scale invariance. So we speed the fractal image encoding by testing the invariance of the wavelet transform appropriate for image encoding. The classfication scheme of range blocks by wavelet transform is given in this paper.展开更多
Surface morphologies of supported polyethylene (PE) catalysts are investigated by an approach combining fractal with wavelet. The multiscale edge (detail) pictures of catalyst surface are extracted by wavelet transfor...Surface morphologies of supported polyethylene (PE) catalysts are investigated by an approach combining fractal with wavelet. The multiscale edge (detail) pictures of catalyst surface are extracted by wavelet transform modulus maxima (WTMM) method. And, the distribution of edge points on the edge image at every scale is studied with fractal and multifractal method. Furthermore, the singularity intensity distribution of edge points in the PE catalyst is analyzed by multifractal spectrum based on WTMM. The results reveal that the fractal dimension values and multifractal spectrums of edge images at small scales have a good relation with the activity and surface morphology of PE catalyst. Meanwhile the catalyst exhibiting the higher activity shows the wider singular strength span of multifractal spectrum based on WTMM, as well as the more edge points with the higher singular intensity. The research on catalyst surface morphology with hybrid fractal and wavelet method exerts the superiorities of wavelet and fractal theories and offers a thought for studying solid surfaces morphologies.展开更多
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2022R1F1A1073375。
文摘Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces.
文摘This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.
基金Supported by the National Natural Science Foundation of China,no.69672039
文摘Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.
文摘A new algorithm to compute continuous wavelet transforms at dyadic scales is proposed here. Our approach has a similar implementation with the standard algorithme a trous and can coincide with it in the one dimensional lower order spline case.Our algorithm can have arbitrary order of approximation and is applicable to the multidimensional case.We present this algorithm in a general case with emphasis on splines anti quast in terpolations.Numerical examples are included to justify our theorerical discussion.
文摘The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
文摘In view of the shortcomes of conventional ElectroCardioGram (ECG) compression algo- rithms,such as high complexity of operation and distortion of reconstructed signal,a new ECG compression encoding algorithm based on Set Partitioning In Hierarchical Trees (SPIHT) is brought out after studying the integer lifting scheme wavelet transform in detail.The proposed algorithm modifies zero-tree structure of SPIHT,establishes single dimensional wavelet coefficient tree of ECG signals and enhances the efficiency of SPIHT-encoding by distributing bits rationally,improving zero-tree set and ameliorating classifying method.For this improved algorithm,floating-point com- putation and storage are left out of consideration and it is easy to be implemented by hardware and software.Experimental results prove that the new algorithm has admirable features of low complexity, high speed and good performance in signal reconstruction.High compression ratio is obtained with high signal fidelity as well.
文摘A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologists reach their goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images. The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet Transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.3%.
文摘Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of selected singularities supports the statistical findings. It is important to select the suitable computation parameters-thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target property as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolution both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the breast abnormality characterization.
文摘Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.
文摘This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.
文摘Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.
文摘We study an approach to integer wavelet transform for lossless compression of medical image in medical picture archiving and communication system (PACS). By lifting scheme a reversible integer wavelet transform is generated, which has the similar features with the corresponding biorthogonal wavelet transform. Experimental results of the method based on integer wavelet transform are given to show better performance and great applicable potentiality in medical image compression.
文摘Objective: To develop a new bioinformatic tool based on a data-mining approach for extraction of the most infor- mative proteins that could be used to find the potential biomarkers for the detection of cancer. Methods: Two independent datasets from serum samples of 253 ovarian cancer and 167 breast cancer patients were used. The samples were examined by surface- enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The datasets were used to extract the informative proteins using a data-mining method in the discrete stationary wavelet transform domain. As a dimensionality re- duction procedure, the hard thresholding method was applied to reduce the number of wavelet coefficients. Also, a distance measure was used to select the most discriminative coefficients. To find the potential biomarkers using the selected wavelet coefficients, we applied the inverse discrete stationary wavelet transform combined with a two-sided t-test. Results: From the ovarian cancer dataset, a set of five proteins were detected as potential biomarkers that could be used to identify the cancer patients from the healthy cases with accuracy, sensitivity, and specificity of 100%. Also, from the breast cancer dataset, a set of eight proteins were found as the potential biomarkers that could separate the healthy cases from the cancer patients with accuracy of 98.26%, sensitivity of 100%, and specificity of 95.6%. Conclusion: The results have shown that the new bioinformatic tool can be used in combination with the high-throughput proteomic data such as SELDI-TOF MS to find the potential biomarkers with high discriminative power.
基金Foundation item: National Natural Science Foundation of China(No.60372072)
文摘In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
文摘Image interpolation is widely studied and used in digital image processing. In this paper, a method of image magnification according to the properties of fi'actal interpolation and wavelet transformation are presented. We focus the development of edge forming methods to be applied as a post process of standard image zooming methods for grayscale images, with the hope of retaining edges. Experiments make sure it valid.
文摘A coding method of speech compression, which is based on Wavlet Transform and Vector Quantization (VQ), is developed and studied. The Wavlet Thansform or Wavlet Packet Thansform is used to process the speech signal, then VQ is used to compress the coefficients of Wavlet Thansform, and the entropy coding is used to decrease the bit rate. The experimental results show that the speech signal, sampled by 8 kHz sampling rate and 8 bit quatisation,i.e., 64 kbit/s bit rate, can be compressed to 6 - 8 kbit/s, and still have high speech quality,and the low-delay, only 8 ms.
文摘Starting with a fractal-based image-compression algorithm based on wavelet transformation for hyperspectral images, the authors were able to obtain more spectral bands with the help of of hyperspectral remote sensing. Because large amounts of data and limited bandwidth complicate the storage and transmission of data measured by TB-level bits, it is important to compress image data acquired by hyperspectral sensors such as MODIS, PHI, and OMIS; otherwise, conventional lossless compression algorithms cannot reach adequate compression ratios. Other loss-compression methods can reach high compression ratios but lack good image fidelity, especially for hyperspectral image data. Among the third generation of image compression algorithms, fractal image compression based on wavelet transformation is superior to traditional compression methods,because it has high compression ratios and good image fidelity, and requires less computing time. To keep the spectral dimension invariable, the authors compared the results of two compression algorithms based on the storage-file structures of BSQ and of BIP, and improved the HV and Quadtree partitioning and domain-range matching algorithms in order to accelerate their encode/decode efficiency. The authors' Hyperspectral Image Process and Analysis System (HIPAS) software used a VC++6.0 integrated development environment (IDE), with which good experimental results were obtained. Possible modifications of the algorithm and limitations of the method are also discussed.
文摘This paper presents some results of the relation between wavelet transform and fractal transform. The wavelet transform of the attractor of fractal transform posseses translational and scale invariance. So we speed the fractal image encoding by testing the invariance of the wavelet transform appropriate for image encoding. The classfication scheme of range blocks by wavelet transform is given in this paper.
基金Supported by the Chinese Petroleum & Chemical Corporation Development De-partment (Grant No. x504024)
文摘Surface morphologies of supported polyethylene (PE) catalysts are investigated by an approach combining fractal with wavelet. The multiscale edge (detail) pictures of catalyst surface are extracted by wavelet transform modulus maxima (WTMM) method. And, the distribution of edge points on the edge image at every scale is studied with fractal and multifractal method. Furthermore, the singularity intensity distribution of edge points in the PE catalyst is analyzed by multifractal spectrum based on WTMM. The results reveal that the fractal dimension values and multifractal spectrums of edge images at small scales have a good relation with the activity and surface morphology of PE catalyst. Meanwhile the catalyst exhibiting the higher activity shows the wider singular strength span of multifractal spectrum based on WTMM, as well as the more edge points with the higher singular intensity. The research on catalyst surface morphology with hybrid fractal and wavelet method exerts the superiorities of wavelet and fractal theories and offers a thought for studying solid surfaces morphologies.