In this short note, a new projective equation (Ф = σФ + Ф^2) is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Boiti-Leon-Manna Pempinelli system (BLM...In this short note, a new projective equation (Ф = σФ + Ф^2) is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Boiti-Leon-Manna Pempinelli system (BLMP). Based on the derived solitary wave solution and by selecting appropriate functions, some novel localized excitations such as multi dromion-solitoffs and fractal-solitons are investigated.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant Nos.Y604106 and Y606128the Scientific Research Fund of Zhejiang Provincial Education Department of China under Grant No.20070568the Natural Science Foundation of Zhejiang Lishui University under Grant Nos.KZ08001 and KZ09005
文摘In this short note, a new projective equation (Ф = σФ + Ф^2) is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Boiti-Leon-Manna Pempinelli system (BLMP). Based on the derived solitary wave solution and by selecting appropriate functions, some novel localized excitations such as multi dromion-solitoffs and fractal-solitons are investigated.