Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative...Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit...Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.展开更多
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia...Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.展开更多
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers...The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly.展开更多
Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the el...Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.展开更多
The corrosion behavior and the effects of temperature on critical chloride content (Ccrit) of steel fibers in RPC were analyzed by a pH meter, ion chromatography, mercury intrusion porosimetry (MIP), and electrochemic...The corrosion behavior and the effects of temperature on critical chloride content (Ccrit) of steel fibers in RPC were analyzed by a pH meter, ion chromatography, mercury intrusion porosimetry (MIP), and electrochemical techniques. It was found that the suspension pH value, the chloride binding capacity, and the total porosity of RPC were lower than those of high-performance concrete (HPC). The pore structure of RPC mainly consisted of gel pores. The Ccrit values of steel fibers in RPC and HPC at 20 ℃ were 1% and 2%, respectively. When the temperature reached 50 ℃, the Ccrit value of steel fibers in HPC decreased significantly, whereas it remained unchanged in RPC. The corrosion rate of corroded fibers in both RPC and HPC started to decrease with the rise in temperature.展开更多
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corres...As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
Microstructures of laminates produced by epoxy/carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections.The main result of the compaction of reinforcement is the flatti...Microstructures of laminates produced by epoxy/carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections.The main result of the compaction of reinforcement is the flatting of bundle shape,the reducing of gap and the embedment of bundles among each layer.The void content outside the bundle decreased sharply during the compaction until it is less than that inside the bundle when the fiber volume fraction is over 60%.The resin flow velocity in the fiber tow is 102-104 times greater than the flow velocity out the fiber tow no matter the capillary pressure is taken into account or not.展开更多
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expresse...The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.展开更多
Recently, the use of steel fiber at high rates has been introduced as the sole method of reinforcement for fully elevated-suspended slabs having long span such as 5 m to 8 m each way, with a span to depth ratio of up ...Recently, the use of steel fiber at high rates has been introduced as the sole method of reinforcement for fully elevated-suspended slabs having long span such as 5 m to 8 m each way, with a span to depth ratio of up to 33 [1]. As a result of long practical experience the total replacement of traditional rebar is a new routine. Now it is also used in the designing of SFRC pavements over conventional concrete pavements. Within the project framework a demonstration of a steel-fiber-reinforced roller-compacted concrete (SFR-RCC) pavement was constructed in a rural as well as urban area. In order to assess the economical condition of the demonstration pavement, life cycle assessment (LCA) and life cycle cost analysis (LCCA) studies were undertaken. This is the advancement study of the various papers which is already published in many publications which serve as the main and important source of study for the research. Many applications of steel fiber are listed in the paper but the main output of this paper is that SFR-RCC is more economically sustainable than others and also helps in reducing the thickness of the pavement up to 20 to 25 percent, due to the excessive strength of steel fiber. The roads of the present system required high cost investment. And the life period is almost 20 years theoretically but the actual life of the road is depending on the maintenance and the applied load. The constructions of road have been done since the 3500 BC but the method does not change fully. Also the cost of the construction is increased continuously;as a result, the construction of roads is more and more complicated and time taken. For the better and economical construction of the roads, we use steel fibers in the composite pavement. The theoretical plan of the construction of composite pavement is given in the methodology, which gives the appropriate idea about the construction of road using steel fiber. Here we use the composite pavement in which the steel fiber is mixed in the concrete layer, after which the bitumen layer is laid for the smooth and suitable riding of the vehicles.展开更多
The effect of arc sprayed times, which are quantitatively described by the volume fraction of coatings, on the mechanical properties of type 316 steel, have been undertaken in the present work. Al wires were utilized ...The effect of arc sprayed times, which are quantitatively described by the volume fraction of coatings, on the mechanical properties of type 316 steel, have been undertaken in the present work. Al wires were utilized as coatings materials. Tensile tests were carried out in the temperature range of Portevin-Le Chatelier (PLC) effect It has been found that grains at edges and corners of the 316 steel specimens have been dramatically constricted by grit blasting and spraying. Grit blasting has been found to exert a shot-peening effect on the mechanical properties of 316 steel specimens. Coatings with lower values of coating volume fraction strengthen the coated specimens in the very similar way as blasting. While if the volume fraction of coating, (Vv)c, exceeds a critical value, (VV)K, softens the specimens. Specimens with low values of (Vv)c, have high values of flow stress, as well as higher values of work-hardening coefficient, Calculations based on the experimental results show that the high thickness coatings have relatively lower contribution to the mechanical properties of specimens.展开更多
The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fib...The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.展开更多
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com...To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.展开更多
Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% ...Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% - 88% with the addition of steel fibers and polymers respectively. When both steel fibers and polymers are simultaneously added, the large pore volume decreases by 88.3% - 90.1% . As a surface active material , polymer has a favorable water-reduced and forming-film effect, which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix. Polymers could form a microstructure network. This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
基金financially supported by the China’s National Key Research and Development Program(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134).
文摘Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.
基金the financial support from Australian Research Council(ARC)(Grant No.DP220100307).
文摘Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.
文摘Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
文摘The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly.
基金Funded by the National Natural Science Foundation of China(Nos.51478164 and 52079048)the Key Research&Development Plan of Jiangsu Province,China(No.BE2021704)。
文摘Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.
基金Funded by the National Natural Science Foundation of China(Nos.51834001 and 51678049)。
文摘The corrosion behavior and the effects of temperature on critical chloride content (Ccrit) of steel fibers in RPC were analyzed by a pH meter, ion chromatography, mercury intrusion porosimetry (MIP), and electrochemical techniques. It was found that the suspension pH value, the chloride binding capacity, and the total porosity of RPC were lower than those of high-performance concrete (HPC). The pore structure of RPC mainly consisted of gel pores. The Ccrit values of steel fibers in RPC and HPC at 20 ℃ were 1% and 2%, respectively. When the temperature reached 50 ℃, the Ccrit value of steel fibers in HPC decreased significantly, whereas it remained unchanged in RPC. The corrosion rate of corroded fibers in both RPC and HPC started to decrease with the rise in temperature.
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
文摘As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,Science and Technology Commission of Shanghai Municipality,China(No.06QA14001)
文摘Microstructures of laminates produced by epoxy/carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections.The main result of the compaction of reinforcement is the flatting of bundle shape,the reducing of gap and the embedment of bundles among each layer.The void content outside the bundle decreased sharply during the compaction until it is less than that inside the bundle when the fiber volume fraction is over 60%.The resin flow velocity in the fiber tow is 102-104 times greater than the flow velocity out the fiber tow no matter the capillary pressure is taken into account or not.
基金Funded by the National Natural Science Foundation of China(51271147)
文摘The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.
文摘Recently, the use of steel fiber at high rates has been introduced as the sole method of reinforcement for fully elevated-suspended slabs having long span such as 5 m to 8 m each way, with a span to depth ratio of up to 33 [1]. As a result of long practical experience the total replacement of traditional rebar is a new routine. Now it is also used in the designing of SFRC pavements over conventional concrete pavements. Within the project framework a demonstration of a steel-fiber-reinforced roller-compacted concrete (SFR-RCC) pavement was constructed in a rural as well as urban area. In order to assess the economical condition of the demonstration pavement, life cycle assessment (LCA) and life cycle cost analysis (LCCA) studies were undertaken. This is the advancement study of the various papers which is already published in many publications which serve as the main and important source of study for the research. Many applications of steel fiber are listed in the paper but the main output of this paper is that SFR-RCC is more economically sustainable than others and also helps in reducing the thickness of the pavement up to 20 to 25 percent, due to the excessive strength of steel fiber. The roads of the present system required high cost investment. And the life period is almost 20 years theoretically but the actual life of the road is depending on the maintenance and the applied load. The constructions of road have been done since the 3500 BC but the method does not change fully. Also the cost of the construction is increased continuously;as a result, the construction of roads is more and more complicated and time taken. For the better and economical construction of the roads, we use steel fibers in the composite pavement. The theoretical plan of the construction of composite pavement is given in the methodology, which gives the appropriate idea about the construction of road using steel fiber. Here we use the composite pavement in which the steel fiber is mixed in the concrete layer, after which the bitumen layer is laid for the smooth and suitable riding of the vehicles.
文摘The effect of arc sprayed times, which are quantitatively described by the volume fraction of coatings, on the mechanical properties of type 316 steel, have been undertaken in the present work. Al wires were utilized as coatings materials. Tensile tests were carried out in the temperature range of Portevin-Le Chatelier (PLC) effect It has been found that grains at edges and corners of the 316 steel specimens have been dramatically constricted by grit blasting and spraying. Grit blasting has been found to exert a shot-peening effect on the mechanical properties of 316 steel specimens. Coatings with lower values of coating volume fraction strengthen the coated specimens in the very similar way as blasting. While if the volume fraction of coating, (Vv)c, exceeds a critical value, (VV)K, softens the specimens. Specimens with low values of (Vv)c, have high values of flow stress, as well as higher values of work-hardening coefficient, Calculations based on the experimental results show that the high thickness coatings have relatively lower contribution to the mechanical properties of specimens.
基金Funded by the National Natural Science Foundation of China(No.51009058)Postdoctoral Science Foundation of China(No.2011M501160)+1 种基金the University Natural Science Research Project of Jiangsu Province(No.13KJD560002)the Doctoral Research Start-up Fund of Jinling Institute of Technology(No.Jit-b-201321)
文摘The fiber reinforced concrete has good dynamic mechanical properties. But corresponding research lacks the dynamic damage characteristics of the polypropylene fiber(fiber of low elastic modulus) and steel fiber(fiber of high elastic modulus) reinforced concrete under medium strain rate(10-6 s-1-10-4 s-1). In order to study the effect of strain rate on the damage characteristics of fiber reinforced concrete during the full curve damage process, the real time dynamic acoustic emission(AE) technique was applied to monitor the damage process of fiber reinforced concrete at three strain rates. The AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency at three strain rates were analyzed. With the accumulation of damage, the AE wavelet energy spectrum in ca8 frequency band increased first and then decreased, and the average AE peak frequency increased gradually. With the increase of strain rate, the AE wavelet energy spectrum in ca8 frequency band and average AE peak frequency decreased gradually. The polypropylene fiber content has more obvious effect on the Dynamic increase factor(DIF) of the peak stress than the steel fiber content. The theoretical basis was provided for the monitoring of dynamic damage of fiber reinforced concrete based on the AE technique.
基金the Technical Specification for Fiber Reinforced ConcreteStructure (No. CECS:2004 2000jb15)
文摘To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.
文摘Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% - 88% with the addition of steel fibers and polymers respectively. When both steel fibers and polymers are simultaneously added, the large pore volume decreases by 88.3% - 90.1% . As a surface active material , polymer has a favorable water-reduced and forming-film effect, which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix. Polymers could form a microstructure network. This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.