The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult ...A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.展开更多
This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fraction...This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.展开更多
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear chara...Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.展开更多
This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing ...This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the s...3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical.展开更多
In this study,a bald eagle optimizer(BEO)is used to get optimal parameters of the fractional-order proportional-integral-derivative(FOPID)controller for load frequency control(LFC).SinceBEOtakes only a very short time...In this study,a bald eagle optimizer(BEO)is used to get optimal parameters of the fractional-order proportional-integral-derivative(FOPID)controller for load frequency control(LFC).SinceBEOtakes only a very short time in finding the optimal solution,it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads.Simulations and demonstrations are carried out using MATLAB-R2020b.The performance of the BEOFOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.The robustness of the BEO-FOPID controller is examined by testing its performance under varying system time constants.The results obtained by the BEOFOPID controller are compared with those obtained by BEO-PID and PID controllers based on recent metaheuristics optimization algorithms,namely the sine-cosine approach,Jaya approach,grey wolf optimizer,genetic algorithm,bacteria foraging optimizer,and equilibrium optimization algorithm.The results confirm that the BEO-FOPID controller obtains the finest result,with the lowest frequency deviation.The results also confirm that the BEOFOPID controller is stable and robust at different loads,under varying system time constants,and under uncertainty of wind and solar energies.展开更多
This article presents a design of the internal model control (IMC) based single degree of freedom (SDF) fractional order (FO) PID controller with a desired bandwidth specification for a class of fractional order...This article presents a design of the internal model control (IMC) based single degree of freedom (SDF) fractional order (FO) PID controller with a desired bandwidth specification for a class of fractional order system (FOS). The drawbacks of the SDF FO-IMC are eliminated with the help of the two-degree of freedom (TDF) FO PID controller. The robust stability and robust performance of the designed controller are analyzed using an example.展开更多
The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintai...The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintain a steady indoor temperature in summer and winter,the control quality cannot meet the related requirements of air-conditioning automation,such as large overshoot,large steady state error.long regulating time,etc.In view of these factors,this paper develops a fractional order PID controller to deal with such problem associated with FCU.Then,by varving mutation factor and crossover rate of basic differential evolution algorithmadaptivelv,a modified differential evolution algorithm(MDEA)is designed to tune the satisfactory values of five parameters of indoor temperature fractional order PID controller.This fractional order PID coutrol system is configured and the corresponding mumerical simulation is conducted by means of MATLAB software.The results indicate that the proposed fractional order PID control svstem and MDEA are reliable and the related control performance indexes meet with the related requirements of comfortable air-conditioning design and control criteria.展开更多
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
基金supported by National Natural Science Foundation of China(61403149,61573298)Natural Science Foundation of Fujian Province(2015J01261,2016J05165)Foundation of Huaqiao University(Z14Y0002)
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
文摘A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
文摘This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.
基金joint financial support of Thailand Research Fund RSA 6280004,RUSA-Phase 2.0 Grant No.F 24-51/2014-UPolicy(TN Multi-Gen),Dept.of Edn.Govt.of India,UGC-SAP(DRS-I)Grant No.F.510/8/DRS-I/2016(SAP-I)+1 种基金DST(FIST-level I)657876570 Grant No.SR/FIST/MS-I/2018/17Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics(NAMAM)group number RG-DES-2017-01-17。
文摘This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
文摘3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical.
基金This research was funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number“IF_2020_NBU_434”.
文摘In this study,a bald eagle optimizer(BEO)is used to get optimal parameters of the fractional-order proportional-integral-derivative(FOPID)controller for load frequency control(LFC).SinceBEOtakes only a very short time in finding the optimal solution,it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads.Simulations and demonstrations are carried out using MATLAB-R2020b.The performance of the BEOFOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.The robustness of the BEO-FOPID controller is examined by testing its performance under varying system time constants.The results obtained by the BEOFOPID controller are compared with those obtained by BEO-PID and PID controllers based on recent metaheuristics optimization algorithms,namely the sine-cosine approach,Jaya approach,grey wolf optimizer,genetic algorithm,bacteria foraging optimizer,and equilibrium optimization algorithm.The results confirm that the BEO-FOPID controller obtains the finest result,with the lowest frequency deviation.The results also confirm that the BEOFOPID controller is stable and robust at different loads,under varying system time constants,and under uncertainty of wind and solar energies.
文摘This article presents a design of the internal model control (IMC) based single degree of freedom (SDF) fractional order (FO) PID controller with a desired bandwidth specification for a class of fractional order system (FOS). The drawbacks of the SDF FO-IMC are eliminated with the help of the two-degree of freedom (TDF) FO PID controller. The robust stability and robust performance of the designed controller are analyzed using an example.
基金the National Natural Science Foundation of China(Nos.61364004 and 51808275)the Chinese Scholars to Study Overseas Sponsored by ChinaScholarship Council Foundation(No.201408625045)+1 种基金the Doctoral Research Funds of Lanzhou University of Technology(No.04-237)the Alumni Foundation Civil Engineering 77,Lanzhou University of Technology(No.TM-QK1301)。
文摘The traditional integer order PID controller manipulates the air-conditioning fan coil unit(FCU)that offers cooliug and heatins loads to each air-conditioning room in summer and winter,respectivelv.In order to maintain a steady indoor temperature in summer and winter,the control quality cannot meet the related requirements of air-conditioning automation,such as large overshoot,large steady state error.long regulating time,etc.In view of these factors,this paper develops a fractional order PID controller to deal with such problem associated with FCU.Then,by varving mutation factor and crossover rate of basic differential evolution algorithmadaptivelv,a modified differential evolution algorithm(MDEA)is designed to tune the satisfactory values of five parameters of indoor temperature fractional order PID controller.This fractional order PID coutrol system is configured and the corresponding mumerical simulation is conducted by means of MATLAB software.The results indicate that the proposed fractional order PID control svstem and MDEA are reliable and the related control performance indexes meet with the related requirements of comfortable air-conditioning design and control criteria.