In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or...In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.展开更多
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv...This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. Th...The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control...In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.展开更多
In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient...In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.展开更多
A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors' bounds in priori. The nonlinear functions in these systems are suppose...A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors' bounds in priori. The nonlinear functions in these systems are supposed to satisfy local Lipschitz conditions but which are estimated with adaptive laws. The novelty is that the combination of adaptive control and impulsive control offers a control strategy gathering the advantages of both. In order to guarantee the convergence is no less than an expected exponential rate, a combined feedback strength design is created such that the symmetric axis can shift freely according to the updated transient feedback strength. All of the unknown Lipschitz constants are also updated exponentially in the meantime of achieving synchronization. Two different fractional-order chaotic systems are employed to demonstrate the effectiveness of the novel adaptive-impulsive control scheme.展开更多
Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchroni...Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well.展开更多
In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integer- order chaotic system, in this paper we investigate the synchronization between a class of fractional-...In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integer- order chaotic system, in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method. Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus. Moreover, three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results. Finally, results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems.展开更多
A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable ...A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.展开更多
In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback cont...In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems. The presented controller which only contains a single driving variable is simple both in design and in implementation. Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme.展开更多
We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability t...We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory, the fractional order differential inequality, and the adaptive strategy. This synchronization approach is simple, universal, and theoretically rigorous. It enables the synchronization of O fractional-order chaotic systems to be achieved in a systematic way. The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.展开更多
In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables ar...In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.展开更多
A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this pap...A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this paper. In comparison with previous methods, not only is the present control scheme simple but also it employs only one control strength, converges very fast, and it is also suitable for a large class of fractional-order chaotic and hyperchaotic systems. Moreover, this scheme is analytical and simple to implement in practice. Numerical and circuit simulations are used to validate and demonstrate the effectiveness of the method.展开更多
In this paper, a method is introduced to construct controller for the synchronization between two fractional order Rossler systems. The key thought is converting a fractional order system into an integer system. The c...In this paper, a method is introduced to construct controller for the synchronization between two fractional order Rossler systems. The key thought is converting a fractional order system into an integer system. The controller uses general linear state error feedback scheme. Numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
文摘In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
文摘This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by Scientific Research Foundation of Huaiyin Institute of Technology (Grant No. HGA1102)
文摘The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant No.KJ2015A256)
文摘In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.
基金supported by King Abdullah University of Science and Technology (KAUST),KSA
文摘In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11161027 and 11262009)the Key Natural Science Foundation of Gansu Province,China(Grant No.1104WCGA195)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20136204110001)
文摘A novel adaptive-impulsive scheme is proposed for synchronizing fractional-order chaotic systems without the necessity of knowing the attractors' bounds in priori. The nonlinear functions in these systems are supposed to satisfy local Lipschitz conditions but which are estimated with adaptive laws. The novelty is that the combination of adaptive control and impulsive control offers a control strategy gathering the advantages of both. In order to guarantee the convergence is no less than an expected exponential rate, a combined feedback strength design is created such that the symmetric axis can shift freely according to the updated transient feedback strength. All of the unknown Lipschitz constants are also updated exponentially in the meantime of achieving synchronization. Two different fractional-order chaotic systems are employed to demonstrate the effectiveness of the novel adaptive-impulsive control scheme.
基金supported by the Education Committee of Chongqing Province,China (Grant No.KJ090503)
文摘Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well.
基金Project supported by the National Natural Science Foundation of China(Grant No.51109180)
文摘In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integer- order chaotic system, in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method. Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus. Moreover, three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results. Finally, results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems.
文摘A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.
基金Project supported by the Natural Science Foundation of Hebei Province,China (Grant No. A2010000343)
文摘In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems. The presented controller which only contains a single driving variable is simple both in design and in implementation. Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme.
基金Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2010000343).
文摘We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory, the fractional order differential inequality, and the adaptive strategy. This synchronization approach is simple, universal, and theoretically rigorous. It enables the synchronization of O fractional-order chaotic systems to be achieved in a systematic way. The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60973097).
文摘In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.
基金supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2008000136)
文摘A new stability theory of nonlinear dynamic systems is proposed, and a novel adaptive synchronisation method is presented for fractional-order chaotic and hyperchaotic systems based on the theory described in this paper. In comparison with previous methods, not only is the present control scheme simple but also it employs only one control strength, converges very fast, and it is also suitable for a large class of fractional-order chaotic and hyperchaotic systems. Moreover, this scheme is analytical and simple to implement in practice. Numerical and circuit simulations are used to validate and demonstrate the effectiveness of the method.
基金the Key Science Research Project of Southwest University for Nationalities under Grant No. 234778.
文摘In this paper, a method is introduced to construct controller for the synchronization between two fractional order Rossler systems. The key thought is converting a fractional order system into an integer system. The controller uses general linear state error feedback scheme. Numerical examples are given to demonstrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.