期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
THE WELL-POSEDNESS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES 被引量:1
1
作者 步尚全 蔡钢 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1603-1617,共15页
Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional int... Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional integro-differential equations D^(α)u(t)+CD^(β)u(t)=Bu(t)+∫_(-∞)td(t-s)Bu(s)ds+f(t),(0≤t≤2π)on periodic Lebesgue-Bochner spaces L^(p)(T;X)and periodic Besov spaces B_(p,q)^(s)(T;X). 展开更多
关键词 Lebesgue-Bochner spaces fractional integro-differential equations MULTIPLIER WELL-POSEDNESS
下载PDF
CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 被引量:9
2
作者 杨银 陈艳萍 黄云清 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期673-690,共18页
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou... We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results. 展开更多
关键词 Spectral Jacobi-collocation method fractional order integro-differential equations Caputo derivative
下载PDF
EXISTENCE AND UNIQUENESS RESULTS FOR BOUNDARY VALUE PROBLEMS OF HIGHER ORDER FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES 被引量:2
3
作者 Dimplekumar N. CHALISHAJAR K. KARTHIKEYAN 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期758-772,共15页
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi... We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results. 展开更多
关键词 Boundary value problems fractional order integro-differential equations bound-ary value problems existence and uniqueness singular gronwall inequality fixed point theorem
下载PDF
Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions 被引量:2
4
作者 Mehran Fatemi Nihan Aliev Sedaghat Shahmorad 《Applied Mathematics》 2011年第10期1292-1296,共5页
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor... In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1]. 展开更多
关键词 fractional Order integro-differential equation NON-LOCAL BOUNDARY Conditions FUNDAMENTAL Solution
下载PDF
DISCRETE GALERKIN METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
5
作者 P.MOKHTARY 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期560-578,共19页
In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corres... In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method. 展开更多
关键词 fractional integro-differential equation(FIDE) Discrete Galerkin(DG) Generalized Jacobi Polynomials(GJPs) Caputo derivative
下载PDF
A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations 被引量:1
6
作者 Qingqing Wu Zhongshu Wu Xiaoyan Zeng 《Communications on Applied Mathematics and Computation》 2021年第3期509-526,共18页
The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fracti... The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last. 展开更多
关键词 fractional integro-differential equation Caputo fractional derivative Jacobi spectral collocation method Convergence analysis
下载PDF
Existence of Solution for a Coupled System of Fractional Integro-Differential Equations on an Unbounded Domain
7
作者 Azizollah Babakhani 《Analysis in Theory and Applications》 2013年第1期47-61,共15页
We present the existence of solution for a coupled system of fractional integro-differential equations. The differential operator is taken in the Caputo fractional sense. We combine the diagonalization method with Arz... We present the existence of solution for a coupled system of fractional integro-differential equations. The differential operator is taken in the Caputo fractional sense. We combine the diagonalization method with Arzela-Ascoli theorem to show a fixed point theorem of Schauder. 展开更多
关键词 fractional derivative/integral coupled system volterra integral equation diagonalization method.
下载PDF
On Fractional Integro-Differential Equation with Nonlinear Time Varying Delay
8
作者 A.A.Soliman K.R.Raslan A.M.Abdallah 《Sound & Vibration》 EI 2022年第2期147-163,共17页
In this manuscript,we analyze the solution for class of linear and nonlinear Caputo fractional Volterra Fredholm integro-differential equations with nonlinear time varying delay.Also,we demonstrate the stability analy... In this manuscript,we analyze the solution for class of linear and nonlinear Caputo fractional Volterra Fredholm integro-differential equations with nonlinear time varying delay.Also,we demonstrate the stability analysis for these equations.Our paper provides a convergence of semi-analytical approximate method for these equations.It would be desirable to point out approximate results. 展开更多
关键词 CONVERGENCE STABILITY fractional integro-differential equation
下载PDF
Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders
9
作者 Fatheah Alhendi Wafa Shammakh Hind Al-Badrani 《Open Journal of Applied Sciences》 2017年第4期157-170,共14页
In this article, variational iteration method (VIM) and homotopy perturbation method (HPM) solve the nonlinear initial value problems of first-order fractional quadratic integro-differential equations (FQIDEs). We use... In this article, variational iteration method (VIM) and homotopy perturbation method (HPM) solve the nonlinear initial value problems of first-order fractional quadratic integro-differential equations (FQIDEs). We use the Caputo sense in this article to describe the fractional derivatives. The solutions of the problems are derived by infinite convergent series, and the results show that both methods are most convenient and effective. 展开更多
关键词 fractional QUADRATIC integro-differential equations Variational ITERATION METHOD HOMOTOPY Perturbation METHOD
下载PDF
A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY
10
作者 Weishan ZHENG Yanping CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2022年第1期387-402,共16页
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma... In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm. 展开更多
关键词 volterra integro-differential equation pantograph delay weakly singular kernel Jacobi-collocation spectral methods error analysis convergence analysis
下载PDF
On Some Modified Methods on Fractional Delay and Nonlinear IntegroDifferential Equation 被引量:1
11
作者 A.A.Soliman K.R.Raslan A.M.Abdallah 《Sound & Vibration》 EI 2021年第4期263-279,共17页
The fundamental objective of this work is to construct a comparative study of some modified methods with Sumudu transform on fractional delay integro-differential equation.The existed solution of the equation is very ... The fundamental objective of this work is to construct a comparative study of some modified methods with Sumudu transform on fractional delay integro-differential equation.The existed solution of the equation is very accurately computed.The aforesaid methods are presented with an illustrative example. 展开更多
关键词 CONVERGENCE STABILITY fractional integro-differential equation
下载PDF
Existence Theorem for a Nonlinear Functional Integral Equation and an Initial Value Problem of Fractional Order in L<sub>1</sub>(R<sub>+</sub>)
12
作者 Ibrahim Abouelfarag Ibrahim Tarek S. Amer Yasser M. Aboessa 《Applied Mathematics》 2013年第2期402-409,共8页
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded... The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus. 展开更多
关键词 NONLINEAR Functional Integral equation volterra Operator Measure of Weak Noncompactness fractional Calculus SCHAUDER Fixed Point Theorem
下载PDF
EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR VOLTERRA INTERGO-DIFFERENTIAL EQUATIONS 被引量:8
13
作者 蒋达清 魏俊杰 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期553-560,共8页
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ... This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results. 展开更多
关键词 volterra integro-differential equation EXISTENCE positive periodic solution fixed point theorem
下载PDF
On Riemann-Type Weighted Fractional Operators and Solutions to Cauchy Problems
14
作者 Muhammad Samraiz Muhammad Umer +3 位作者 Thabet Abdeljawad Saima Naheed Gauhar Rahman Kamal Shah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期901-919,共19页
In this paper,we establish the new forms of Riemann-type fractional integral and derivative operators.The novel fractional integral operator is proved to be bounded in Lebesgue space and some classical fractional inte... In this paper,we establish the new forms of Riemann-type fractional integral and derivative operators.The novel fractional integral operator is proved to be bounded in Lebesgue space and some classical fractional integral and differential operators are obtained as special cases.The properties of new operators like semi-group,inverse and certain others are discussed and its weighted Laplace transform is evaluated.Fractional integro-differential freeelectron laser(FEL)and kinetic equations are established.The solutions to these new equations are obtained by using the modified weighted Laplace transform.The Cauchy problem and a growth model are designed as applications along with graphical representation.Finally,the conclusion section indicates future directions to the readers. 展开更多
关键词 Weighted fractional operators weighted laplace transform integro-differential free-electron laser equation kinetic differ-integral equation
下载PDF
Null-Controllability of a Diffusion Equation with Fractional Integro-Differential Expressions
15
作者 Xiangdong Yang 《Analysis in Theory and Applications》 CSCD 2023年第3期299-308,共10页
The article considers the controllability of a diffusion equation with fractional integro-differential expressions.We prove that the resulting equation is nullcontrollable in arbitrary small time.Our method reduces es... The article considers the controllability of a diffusion equation with fractional integro-differential expressions.We prove that the resulting equation is nullcontrollable in arbitrary small time.Our method reduces essentially to the study of classical moment problems. 展开更多
关键词 NULL-CONTROLLABILITY Mittag-Leffler functions Paley-Wiener type theorems diffusion equation with fractional integro-differential expressions
原文传递
On Existence of Entropy Solution for a Doubly Nonlinear Differential Equation with L1 -Data
16
作者 Safimba Soma Mohamed Bance 《Journal of Applied Mathematics and Physics》 2023年第12期4092-4127,共36页
We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(... We consider a class of doubly nonlinear history-dependent problems having a convection term and a pseudomonotone nonlinear diffusion operator associated an equation of the type ?<sub>t</sub>(k * (b(v) - b(v<sub>0</sub>))) - div(a(x,Dv) + F(v)) = f where the right hand side belongs to L<sup>1</sup>. The kernel k belongs to the large class of PC kernels. In particular, the case of fractional time derivatives of order α ∈ (0,1) is included. Assuming b nondecreasing with L<sup>1</sup>-data, we prove existence in the framework of entropy solutions. The approach adopted for the proof is based on a several step approximation method and by using a result in the case of a strictly increasing b. 展开更多
关键词 fractional Time Derivative Nonlinear volterra equation Doubly Nonlinear Entropy Solution
下载PDF
Optimal Convergence Rate of q-Maruyama Method for StochasticVolterra Integro-Differential Equations with Riemann-Liouville Fractional Brownian Motion
17
作者 Mengjie Wang Xinjie Dai Aiguo Xiao 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期202-217,共16页
This paper mainly considers the optimal convergence analysis of the q-Maruyama method for stochastic Volterra integro-differential equations(SVIDEs)driven by Riemann-Liouville fractional Brownian motion under the glob... This paper mainly considers the optimal convergence analysis of the q-Maruyama method for stochastic Volterra integro-differential equations(SVIDEs)driven by Riemann-Liouville fractional Brownian motion under the global Lipschitz and linear growth conditions.Firstly,based on the contraction mapping principle,we prove the well-posedness of the analytical solutions of the SVIDEs.Secondly,we show that the q-Maruyama method for the SVIDEs can achieve strong first-order convergence.In particular,when the q-Maruyama method degenerates to the explicit Euler-Maruyama method,our result improves the conclusion that the convergence rate is H+1/2,H∈(0,1/2)by Yang et al.,J.Comput.Appl.Math.,383(2021),113156.Finally,the numerical experiment verifies our theoretical results. 展开更多
关键词 Stochastic volterra integro-differential equations Riemann-Liouville fractional Brownian motion WELL-POSEDNESS strong convergence
原文传递
The Self-similar Solution to Some Nonlinear Integro-differential Equations Corresponding to Fractional Order Time Derivative 被引量:3
18
作者 Chang Xing MIAO Han YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1337-1350,共14页
In this paper we study the self-similar solution to a class of nonlinear integro-differential equations which correspond to fractional order time derivative and interpolate nonlinear heat and wave equation. Using the ... In this paper we study the self-similar solution to a class of nonlinear integro-differential equations which correspond to fractional order time derivative and interpolate nonlinear heat and wave equation. Using the space-time estimates which were established by Hirata and Miao in [1] we prove the global existence of self-similar solution of Cauchy problem for the nonlinear integro-differential equation in C*([0,∞];B^8pp,∞(R^n). 展开更多
关键词 Self-similar solution Space-time estimates integro-differential equation fractional order time derivative Mittag-Lettter's function Cauchy problem
原文传递
An analytical solution with existence and uniqueness conditions for fractional integro-differential equations 被引量:3
19
作者 Pratibha Verma Manoj Kumar 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第5期147-169,共23页
This study aims to apply the two-step Adomian decomposition method(TSADM)to find an analytical solution of integro-differential equations for fractional order without discretization/approximation with less number of i... This study aims to apply the two-step Adomian decomposition method(TSADM)to find an analytical solution of integro-differential equations for fractional order without discretization/approximation with less number of iterations and reduce the computational efforts.Moreover,we have established the results for the existence and uniqueness of a solution with the help of some fixed point theorems and the Banach contraction principle.Furthermore,the method is demonstrated on different test examples arising in real life situations.It is concluded that the TSADM provides exact solution of the fractional integro-differential equations in one iteration.At the same time,the other existing methods furnish an approximate solution and require lots of computation to solve the problem applying discretization/approximation on fractional operators. 展开更多
关键词 Caputo fractional derivative two-step Adomian decomposition method integro-differential equation fixed point theorem
原文传递
Numerical studies for solving fractional integro-differential equations 被引量:3
20
作者 A.M.S.Mahdy 《Journal of Ocean Engineering and Science》 SCIE 2018年第2期127-132,共6页
In this paper,we give a new numerical method for solving a linear system of fractional integro-differential equations.The fractional derivative is considered in the Caputo sense.The proposed method is least squares me... In this paper,we give a new numerical method for solving a linear system of fractional integro-differential equations.The fractional derivative is considered in the Caputo sense.The proposed method is least squares method aid of Hermite polynomials.The suggested method reduces this type of systems to the solution of systems of linear algebraic equations.To demonstrate the accuracy and applicability of the presented method some test examples are provided.Numerical results show that this approach is easy to implement and accurate when applied to integro-differential equations.We show that the solutions approach to classical solutions as the order of the fractional derivatives approach. 展开更多
关键词 Least squares method Caputo fractional Hermite polynomials Linear fractional integro-differential equations
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部