期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
New Configurations of the Fuzzy Fractional Differential Boussinesq Model with Application in Ocean Engineering and Their Analysis in Statistical Theory
1
作者 Yu-Ming Chu SaimaRashid +1 位作者 Shazia Karim Anam Sultan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1573-1611,共39页
The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy ... The fractional-order Boussinesq equations(FBSQe)are investigated in this work to see if they can effectively improve the situation where the shallow water equation cannot directly handle the dispersion wave.The fuzzy forms of analytical FBSQe solutions are first derived using the Adomian decomposition method.It also occurs on the sea floor as opposed to at the functionality.A set of dynamical partial differential equations(PDEs)in this article exemplify an unconfined aquifer flow implication.Thismethodology can accurately simulate climatological intrinsic waves,so the ripples are spread across a large demographic zone.The Aboodh transform merged with the mechanism of Adomian decomposition is implemented to obtain the fuzzified FBSQe in R,R^(n) and(2nth)-order involving generalized Hukuhara differentiability.According to the system parameter,we classify the qualitative features of the Aboodh transform in the fuzzified Caputo and Atangana-Baleanu-Caputo fractional derivative formulations,which are addressed in detail.The illustrations depict a comparison analysis between the both fractional operators under gH-differentiability,as well as the appropriate attributes for the fractional-order and unpredictability factorsσ∈[0,1].A statistical experiment is conducted between the findings of both fractional derivatives to prevent changing the hypothesis after the results are known.Based on the suggested analyses,hydrodynamic technicians,as irrigation or aquifer quality experts,may be capable of obtaining an appropriate storage intensity amount,including an unpredictability threshold. 展开更多
关键词 Fuzzy set theory aboodh transform adomian decomposition method boussinesq equation fractional derivative operators analysis of variance test
下载PDF
ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION WITH A BOUNDARY OPERATOR OF A FRACTIONAL ORDER 被引量:2
2
作者 A.S.BERDYSHEV A.CABADA B.Kh.TURMETOV 《Acta Mathematica Scientia》 SCIE CSCD 2014年第6期1695-1706,共12页
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouvill... This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems. 展开更多
关键词 biharmonic equation boundary value problem fractional derivative the RiemannLiouville operator
下载PDF
q–differ-integral operator on p–valent functions associated with operator on Hilbert space
3
作者 Shahram Najafzadeh 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2023年第3期458-466,共9页
Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator i... Making use of multivalent functions with negative coefficients of the type f (z)=z^(p)-~(∑)_(k=p+1)^(∞)a_(k)z^(k),which are analytic in the open unit disk and applying the q-derivative a q–differintegral operator is considered.Furthermore by using the familiar Riesz-Dunford integral,a linear operator on Hilbert space H is introduced.A new subclass of p-valent functions related to an operator on H is defined.Coefficient estimate,distortion bound and extreme points are obtained.The convolution-preserving property is also investigated. 展开更多
关键词 multivalent function fractional q–derivative operator fractional q–integral operator Hilbert space coefficient estimate distortion bound extreme point convolution(or Hadamard product)
下载PDF
Existence of positive solutions for integral boundary value problem of fractional differential equations 被引量:4
4
作者 Xiping Liu Guiyun Wu 《上海师范大学学报(自然科学版)》 2014年第5期496-505,共10页
In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By u... In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By using the fixed point theorem in cone,the existence of positive solutions for the boundary value problem is obtained. Some examples are also presented to illustrate the application of our main results. 展开更多
关键词 fractional differential equations Riemann-Liouville fractional derivative fixed point theorem fractional order linear derivative operator
下载PDF
Using wavelet multi-resolution nature to accelerate the identification of fractional order system
5
作者 李远禄 孟霄 丁亚庆 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期21-29,共9页
Because of the fractional order derivatives, the identification of the fractional order system(FOS) is more complex than that of an integral order system(IOS). In order to avoid high time consumption in the system... Because of the fractional order derivatives, the identification of the fractional order system(FOS) is more complex than that of an integral order system(IOS). In order to avoid high time consumption in the system identification, the leastsquares method is used to find other parameters by fixing the fractional derivative order. Hereafter, the optimal parameters of a system will be found by varying the derivative order in an interval. In addition, the operational matrix of the fractional order integration combined with the multi-resolution nature of a wavelet is used to accelerate the FOS identification, which is achieved by discarding wavelet coefficients of high-frequency components of input and output signals. In the end, the identifications of some known fractional order systems and an elastic torsion system are used to verify the proposed method. 展开更多
关键词 fractional wavelet operational torsion accelerate verify derivative decomposed integer coordinates
下载PDF
A Unified FastMemory-Saving Time-SteppingMethod for Fractional Operators and Its Applications
6
作者 Yuxiang Huang Qiaoge Li +2 位作者 Rongxin Li Fanhai Zeng Ling Guo 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第3期679-714,共36页
Time-dependent fractional partial differential equations typically require huge amounts of memory and computational time,especially for long-time integration,which taxes computational resources heavily for high-dimens... Time-dependent fractional partial differential equations typically require huge amounts of memory and computational time,especially for long-time integration,which taxes computational resources heavily for high-dimensional problems.Here,we first analyze existing numerical methods of sum-of-exponentials for approximating the kernel function in constant-order fractional operators,and identify the current pitfalls of such methods.In order to overcome the pitfalls,an improved sum-of-exponentials is developed and verified.We also present several sumof-exponentials for the approximation of the kernel function in variable-order fractional operators.Subsequently,based on the sum-of-exponentials,we propose a unified framework for fast time-stepping methods for fractional integral and derivative operators of constant and variable orders.We test the fast method based on several benchmark problems,including fractional initial value problems,the time-fractional Allen-Cahn equation in two and three spatial dimensions,and the Schr¨odinger equation with nonreflecting boundary conditions,demonstrating the efficiency and robustness of the proposed method.The results show that the present fast method significantly reduces the storage and computational cost especially for long-time integration problems. 展开更多
关键词 Sum-of-exponentials contour quadrature fractional integral and derivative operators fast time-stepping methods time-fractional Allen-Cahn equation nonreflecting boundary conditions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部